• Title/Summary/Keyword: Photosynthesis rate

Search Result 464, Processing Time 0.03 seconds

Effect of micronutritional-element deficienies on the metabolism of Chlorella cells. (I) -On the growth rate, respiation and photosynthesis- (Chlorella 의 물질대사에 미치는 미양원소의 결핍효과 1 (제 1 ) -생 및 광합성 에 관하여-)

  • Lee, Yung-Nok;Chin, Pyung;Sim, Woong-Seop
    • Korean Journal of Microbiology
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 1967
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Physiological activities such as growth rate, reproduction, endogenous and glucose respiration, photosynthetic activity and biosythesis of chlorophyll of the micro-element definition cells were measured. It generally, growth rate, respiratory and photosynthetic activities, and biosynthesis of chlorophyll of the micro-element deficient cells decreased more or less, compared with those of the normal cells. The growth of the algal cells in an iron-free medium were retarded severely with the chlorosis, and the photosynthetic activity of the cells decreased remarkably even though the low content of chlorophyll in the cells owing to the iron-deficiency is considered. Therefore, it is deduced that iron takes part in the photosynthetic process itself, possibly by its participation in the photo phosphorylation coupled with electron transport. Respiratory activity of boron-deficient cells showed the most severe decrease whereas those of the molybdenum-deficient cells showed very slight decrease in spite of severe growth retardation.

  • PDF

Study on Physiological and Ecological Characteristics of Collective Varieties on Elephant food ( Amorphophallus Konjac K.) (구약감자 수집종의 생리생태적 특성)

  • 이희덕
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.418-421
    • /
    • 1997
  • This research was performed to understand physiological and ecological characterisities and to de stable production by the way of the establishment of cultivation in elephant food. The results of the investigation of developmental characterisitics, leaf area, photosynthetic ability, chloroplast content for collective varieties are as follows. In the ecological characterisrics for five varieties of elephant food collected from domestic and foreign countries, appearance days for Japanese collective varieties was 60 days, which was two days earlier than domestic collective variety, Jechon collective variety. In appearance rate, Japanese collective variety was 90%, which was higher than Kumsan collective variety, 85%. In the development and yield of the ground portion, Japanese variety was the highest during all developmental period follwed by Chinese and Jechon collective varieties. The larger leaf area, the higher photosynthesis was found. In the amount of chlorophyll content, the higher intercepting light rate, the higher chlorophyll amount was found, which was 30, 50, 70% higher amount than non intercepting light rate.

  • PDF

A Study on Estimation Method for $CO_2$ Uptake of Vegetation using Airborne Hyperspectral Remote Sensing

  • Endo, Takahiro;Yonekawa, Satoshi;Tamura, Masayuki;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1076-1080
    • /
    • 2003
  • $CO_2$ uptake of vegetation is one of the important variables in order to estimate photosynthetic activity, plant growth and carbon budget estimations. The objective of this research was to develop a new estimation method of $CO_2$ uptake of vegetation based on airborne hyperspectral remote sensing measurements in combination with a photosynthetic rate curve model. In this study, a compact airborne spectrographic imager (CASI) was used to obtain image over a field that had been set up to study the $CO_2$ uptake of corn on August 7, 2002. Also, a field survey was conducted concurrently with the CASI overpass. As a field survey, chlorophyll a content, photosynthetic rate curve, Leaf area, dry biomass and light condition were measured. The developed estimation method for $CO_2$ uptake consists of three major parts: a linear mixture model, an enhanced big leaf model and a photosynthetic rate curve model. The Accuracy of this scheme indicates that $CO_2$ uptake of vegetation could be estimated by using airborne hyperspectral remote sensing data in combination with a physiological model.

  • PDF

ERRATUM : Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (ERRATUM : 반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

Characterization of LexA-mediated Transcriptional Enhancement of Bidirectional Hydrogenase in Synechocystis sp. PCC 6803 upon Exposure to Gamma Rays

  • Kim, Jin-Hong;Lee, Min Hee;Kim, Ji Hong;Moon, Yu Ran;Cho, Eun Ju;Kim, Ji Eun;Lee, Choon-Hwan;Chung, Byung Yeoup
    • Rapid Communication in Photoscience
    • /
    • v.1 no.1
    • /
    • pp.21-24
    • /
    • 2012
  • Influence of gamma rays on the cyanobacterium Synechocystis sp. PCC 6803 cells was investigated in terms of a bidirectional hydrogenase, which is encoded by hoxEFUYH genes and responsible for biohydrogen production. Irradiated cells revealed a substantial change in stoichiometry of photosystems at one day after gamma irradiation at different doses. However, as evaluated by the maximal rate of photosynthetic oxygen evolution, maximal photochemical efficiency of photosystem II, and chlorophyll content, net photosynthesis or photosynthetic capacity was not significantly different between the control and irradiated cells. Instead, transcription of hoxE, hoxH, or lexA, which encodes a subunit of bidirectional hydrogenase or the only transcriptional activator, LexA, for hox genes, was commonly enhanced in the irradiated cells. This transcriptional enhancement was more conspicuously observed immediately after gamma irradiation. In contrast, hydrogenase activities were found to somewhat lower in the irradiated cells. Therefore, we propose that transcription of hox genes should be enhanced by gamma irradiation in a LexA-mediated and possibly photosynthesis-independent manner and that this enhancement might not induce a subsequent increase in hydrogenase activities, probably due to the presence of post-transcriptional and/or post-translational regulatory mechanisms.

Effects of Soil Moisture Content on Leaf Water Potential and Photosynthesis in Soybean Plants (토양성분이 콩의 잎 수분포텐셜 및 광합성에 미치는 영향)

  • 류용환;이석하;김석동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.168-172
    • /
    • 1996
  • The soil moisture content and its relation to plants may be important in determining the crop growth and yield. The present study was undertaken to evaluate the leaf water potential and photosynthetic activity in soybean plants as affected by the timing of soil water stress. The soybean variety, 'Tachinagaha', was grown in a pot. The 15 day-old seedlings were subject to the three levels of soil moisture content(25, 40 and 55%) for 25 days. Then the treated soybean plants were placed again at the level of 25% soil moisture content for 25 days, and were compared with the control which was well-watered at 40% level for whole growth period. Soybean plants grown under continuous drought showed higher apparent photosynthetic rate(AP) than those under well-watering /drought in the first /second water treatment, suggesting that AP was adjusted after previous acclimation to drought. Over a wide range of photosynthetic photon flux densities(PPFD), drought or excessive water stress resulted in the decrease in AP when compared with the control. AP and stomatal conductance were decreased in soybean plants subject to water deficit stress, suggesting that AP and stomatal conductance were more sensitive to drought than excessive water stress.

  • PDF

Photosynthesis and Leaf Anatomical Morphology on Different Leaf Shape of Soybean (엽형에 따른 콩 품종의 광합성 능력과 잎의 해부형태 비교)

  • Moon-Hee Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.248-251
    • /
    • 2003
  • To find ideal leaf types for soybean breeding program, we examined the relationships among leaf anatomical and morphological characteristics and $\textrm{CO}_2$ assimilation on the different leaflet shape of soybean (Glycine max). In anatomical characters of leaf, palisade and spongy cells were thicker in both small seed cultivars with narrow leaflet and large seed cultivars with wide leaflet than others. $\textrm{CO}_2$ uptake per plant and leaf thickness were significantly associated with seed yield per plant, showing difference among the soybean cultivars. Although the leaf area was lower for narrow leaflet cultivars, which had a significantly higher photosynthetic rate per plant comparable to the wide leaflet cultivars.

Assessment of the Dynamics of Microbial Community Associated with Tetraselmis suecica Culture under Different LED Lights Using Next-Generation Sequencing

  • Yang, Su-Jeong;Kim, Hyun-Woo;Choi, Seok-Gwan;Chung, Sangdeok;Oh, Seok Jin;Borkar, Shweta;Kim, Hak Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1957-1968
    • /
    • 2019
  • Tetraselmis is a green algal genus, some of whose species are important in aquaculture as well as biotechnology. In algal culture, fluorescent lamps, traditional light source for culturing algae, are now being replaced by a cost-effective light-emitting diodes (LEDs). In this study, we investigated the effect of LED light of different wavelengths (white, red, yellow, and blue) on the growth of Tetraselmis suecica and its associated microbial community structures using the next-generation sequencing (NGS). The fastest growth rate of T. suecica was shown in the red light, whereas the slowest was in yellow. The highest OTUs (3426) were identified on day 0, whereas the lowest ones (308) were found on day 15 under red light. The top 100 OTUs associated with day 0 and day 5 cultures of T. suecica under the red and yellow LED were compared. Only 26 OTUs were commonly identified among four samples. The highest numbers of unique OTUs were identified at day 0, indicating the high degree of initial microbial diversity of the T. suecica inoculum. The red light-unique OTUs occupied 34.98%, whereas the yellow-specific OTUs accounted for only 2.2%. This result suggested a higher degree of interaction in T. suecica culture under the red light, where stronger photosynthesis occurs. Apparently, the microbial community associated with T. suecica related to the oxygen produced by algal photosynthesis. This result may expand our knowledge about the algae-bacteria consortia, which would be useful for various biotechnological applications including wastewater treatment, bioremediation, and sustainable aquaculture.

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

Comparisons of Biomass, Productivity and Productive Structure between Korean Alder and Oak Stands (물오리나무와 상수리나무숲의 생산력 비교)

  • Myung In Chae;Joon Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.1 no.2
    • /
    • pp.57-65
    • /
    • 1977
  • The biomass and net production of alder and oak trees was estimated by allometric method. The productivity of the two stands of alder and oak was obviously different judging from the rate of photosynthesis productive structure and vertical distribution of light. The amounts of net photosynthesis under the saturated light were 2.31, 1.42mg $CO_2/dm^2\cdot$hr. in the sun and shade leaves of alder tree and 1.58, 0.84mg $CO_2/dm^2\cdot$hr in that of the oak, respectively. Total annual respiration loss calculated from the respiration measured at $25^{\circ}C$ and the mean air temperature from every 10 days were 13.56ton/ha.yr in the alder stand and 19.83 ton/ha.yr in the oak. The productive structure and the vertical distribution of light in the stand were assumedly more effective to produce dry matter in the oak stand than in the alder. The biiomasses measured in 1975 and 1976 were 51.51 and 56.82 ton/ha in the alder stand and 73.35, 86.77 ton/ha in the oak one, respectively. Annual net production and gross production were 8.56 and 22.12 ton/ha.yr in the alder stand but those were 17.90 and 37.74 ton/ha.yr in the oak stand. The ratios of respiration to gross procution (R/Pg) were prespectively 0.61 and 0.53 inthe alder and oak stands. Efficiencies of solar energy utilizaztion of net production during the growing season(May-Oct.) were 0.67 and 1.40% and those of gross production were 1.72 and 2.94% in the alder and oak stands respectively.

  • PDF