• Title/Summary/Keyword: Photopolymer Resin

Search Result 25, Processing Time 0.024 seconds

The effect of 4,4'-bis(N,N-diethylamino)benzophenone on the degree of conversion in liquid photopolymer for dental 3D printing

  • Lee, Du-Hyeong;Mai, Hang Nga;Yang, Jin-Chul;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • PURPOSE. The purpose of this preliminary study was to investigate the effects of adding 4,4'-bis(N,N-diethylamino) benzophenone (DEABP) as a co-initiator to a binary photoinitiating system (camphorquinone-amine) to analyze on the degree of conversion (DC) of a light-cured resin for dental 3D printing. MATERIALS AND METHODS. Cylindrical specimens (N=60, n=30 per group, ${\phi}5mm{\times}1mm$) were fabricated using bisphenol A glycerolate dimethacrylate (BisGMA) both with and without DEABP. The freshly mixed resins were exposed to light in a custom-made closed chamber with nine light-emitting diode lamps (wavelength: 405 nm; power: $840mW/cm^2$) for polymerization at each incidence of light-irradiation at 10, 30, 60, 180, and 300 seconds, while five specimens at a time were evaluated at each given irradiation point. Fourier-transform infrared (FTIR) spectroscopy was used to measure the DC values of the resins. Two-way analysis of variance and the Duncan post hoc test were used to analyze statistically significant differences between the groups and given times (${\alpha}$=.05). RESULTS. In the DEABP-containing resin, the DC values were significantly higher at all points in time (P<.001), and also the initial polymerization velocity was faster than in the DEABP-free resin. CONCLUSION. The addition of DEABP significantly enhanced the DC values and, thus, could potentially become an efficient photoinitiator when combined with a camphorquinone-amine system and may be utilized as a more advanced photopolymerization system for dental 3D printing.

Effect of post-rinsing time and method on accuracy of denture base manufactured with stereolithography

  • Katheng, Awutsadaporn;Kanazawa, Manabu;Komagamine, Yuriko;Iwaki, Maiko;Namano, Sahaprom;Minakuchi, Shunsuke
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • PURPOSE. This in vitro study investigates the effect of different post-rinsing times and methods on the trueness and precision of denture base resin manufactured through stereolithography. MATERIALS AND METHODS. Ninety clear photopolymer resin specimens were fabricated and divided into nine groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5, 10, and 15 min using three methods-automated, ultrasonic cleaning, and hand washing. The specimens were polymerized for 30 min at 40℃. For trueness, the scanned intaglio surface of each SLA denture base was superimposed on the original standard tessellation language (STL) file using best-fit alignment (n = 10). For precision, the scanned intaglio surface of the STL file in each specimen group was superimposed across each specimen (n = 45). The root mean square error (RMSE) was measured, and the data were analyzed statistically through one-way ANOVA and Tukey test (α < .05). RESULTS. The 10-min automated group exhibited the lowest RMSE. For trueness, this was significantly different from specimens in the 5-min hand-washed group (P < .05). For precision, this was significantly different from those of other groups (P < .05), except for the 15-min automated and 15-min ultrasonic groups. The color map results indicated that the 10-min automated method exhibited the most uniform distribution of the intaglio surface adaptation. CONCLUSION. The optimal postprocessing rinsing times and methods for achieving clear photopolymer resin were found to be the automated method with rinsing times of 10 and 15 min, and the ultrasonic method with a rinsing time of 15 min.

Generation of Laser Scan Path Considering Resin Solidification Phenomenon in Micro-stereolithography Technology (마이크로 광 조형기술에서 수지경화현상을 고려한 레이저 주사경로 생성)

  • 조윤형;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1037-1040
    • /
    • 2002
  • In micro-stereolithography technology, fabrication conditions that include laser power, laser scan speed, laser scan pitch, and material property of photopolymer such as penetration depth and critical exposure are considered as major process variables. But the existing scan path generation methods based only on CAD model have not taken them into account, which has resulted in cross-section dimension of low accuracy. Thus, to enhance cross-section dimensional accuracy, the physical resin solidification n phenomena should be reflected in laser scan path generation and stage operating code. In this paper, multi-line experiments based on single line solidification model are performed. And the method for improving cross-section dimensional accuracy is presented, which is to apply the database based on experimental results to laser scan path generation.

  • PDF

Modification of the curing characteristics of the photocurable resin FA1260T for 3D microfabrication using microstereolithography (삼차원 마이크로광조형 기술 응용을 위한 광경화 수지 EA1260T의 경화특성 조절에 대한 연구)

  • Kim Sung-Hoon;Jung Dae-Jun;Joo Jae-Young;Jeong Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.174-179
    • /
    • 2006
  • The curing characteristics of a photocurable resin are critical factors that often decide the ultimate resolution and structural sharpness of a final product fabricated by microstereolithography$(\mu-STL)$. In this study, we investigated the curing characteristics of the FA1260T photopolymer under a visible laser light of 42nm wavelength. Modification of the curing property of the FA1260T is attempted to reduce the cure depth $(D_c)$ by adding a radical quencher to the resin. Also, an organic solvent was used to reduce the resin viscosity for an improvement of the flatness of the liquid surface during layer-by-layer curing. As a result, the minimum $D_c$ has been reduced over a factor of 3 with no abrupt increase. Samples of three dimensional microstructures fabricated using the modified FA1260T are presented.

The Fabrication of Microstructures and Curing Characteristics in Photopolymer on the Microstereolithography using a Dynamic Pattern Generator (다이내믹 패턴 형성기를 이용한 마이크로 광 조형기술에서 미세 구조물 제작 및 수지경화특성에 관한 연구)

  • Kwon B.H.;Choi J.W.;Ha Y.M.;Kim H.S.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1181-1185
    • /
    • 2005
  • Microstereolithography has evolved from the stereolithography technique, and is also based on a light-induced layer-stacking manufacturing. Integral microstereolithography is proposed for building a 3D microstructure rapidly, which allows the manufacture of a complete layer by one irradiation only. In this study, we developed the integral microstereolithography apparatus based on the use of $DMD^{TM}$ as dynamic pattern generator. It is composed of Xenon-Mercury lamp, optical devices, pattern generator, precision stage, controllers and the control program. Also, we estimated curing characteristics in photopolymer. The relationship between the viscosity of diluent-oligomer solutions and curing width, irradiation time and curing property has been studied.

  • PDF

Effect of the Laser Beam Size on the Cure Properties of a Photopolymer in Stereolithography

  • Sim, Jae-Hyung;Lee, Eun-Dok;Kweon, Hyeog-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.50-55
    • /
    • 2007
  • Stereolithography (SLA) is a technique using a laser beam to cure a photopolymer liquid resin with three-dimensional computer-aided design (CAD) data, The accuracy of the prototype, the build time, and the cured properties of the resins are controlled by the SLA process parameters such as the size of the laser beam, scan velocity, hatch spacing, and layer thickness, In particular, the size of the laser beam is the most important parameter in SLA, This study investigated the curing properties of photopolymers as a function of the laser beam size, The cure width and depth were measured either on a single cure line or at a single cure layer for various hatch spacings and laser beam sizes, The cure depth ranged from 0.23 to 0.34 mm and was directly proportional to the beam radius, whereas the cure width ranged from 0.42 to 1.07 mm and was inversely proportional to the beam radius, The resulting surface roughness ranged from 1.12 to $2.23{\mu}m$ for a ratio of hatch spacing to beam radius in the range 0.5-2.0 at a beam radius of 0.17 mm and a scan velocity of 125 mm/sec.

Observation of surface roughness on three types of resin based on grinding time of dental automatic barrel finishing (치과용 자동바렐연마기의 연마시간에 따른 3종 레진의 표면거칠기 관찰)

  • Jung, An-Na;Ko, Hyeon-Jeong;Park, Yu-Jin
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.56-61
    • /
    • 2021
  • Purpose: This study aimed to produce resin prosthetics using a dental automatic barrel finishing. Surface roughness and surface topography of resins were observed according to the grinding time of the dental automatic barrel finishing. Methods: This study was performed with thermopolymer, autopolymer, and photopolymer resins. The dimensions of the specimen were 10×10×2 mm. Each specimen was polymerized according to the manufacturer's instructions. The polymerized resin was honed for 30 minutes at 5-min intervals in a dental automatic barrel finishing. The specimen was observed using a three-dimensional (3D) optical microscope, and the surface roughness was measured. Results: After the polishing with the dental automatic barrel finishing, the heat-cured (HC) specimen showed the highest and lowest values of Ra after 10 and 15 minutes, respectively. The self-cured (SC) specimen showed the highest and lowest values of Ra after 10 and 25 minutes, respectively. Finally, the 3D specimen showed the highest and lowest values of Ra after 5 and 20 minutes, respectively. Conclusion: After measuring the surface roughness of the three types of resins according to the grinding time of the dental automatic barrel finishing, the lowest Ra values for the HC, SC, and 3D specimens were measured after 15, 25, and 20 minutes, respectively. Therefore, we concluded that a limit on the grinding time of the resin using a dental automatic barrel finishing is needed.

Comparison of polymerization by time of light curing for dental 3D printing (치과 3D 프린팅용 광중합 시간에 따른 중합도 비교)

  • Kim, Dong-Yeon;Lee, Gwang-Young
    • Journal of Technologic Dentistry
    • /
    • v.44 no.3
    • /
    • pp.76-80
    • /
    • 2022
  • Purpose: The purpose of this study is to analyze the depth according to curing using photocurable resin for dental three-dimensional printing. Methods: A stainless mold with a height of 4 mm was prepared. Ultraviolet (UV) polymerization resin was injected into the mold. Photocuring was then performed for 5 minutes using a photopolymerizer, and the height was measured using a digital measuring instrument (first group). Second, light polymerization was also performed outside the mold for 5 minutes, and the height was measured using a digital measuring instrument. Third, light polymerization was further performed for 5 minutes, and the height was measured using a digital measuring instrument. Statistical analysis was performed with the Kruskal-Wallis test, which is a nonparametric test (α=0.05). Results: The third group had the largest measurement length, whereas the first group had the smallest. However, the difference between groups was not statistically significant (p>0.05). The color of the first group was different from that of the second and third groups. Conclusion: All of the 4-mm-thick photocured specimens had a curing reaction, but the part that was not directly irradiated with UV did not show its original color.

Development of Stereolithography system using X-Y robot (X-Y 로봇을 이용한 광조형시스템 개발)

  • 김준안
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.18-25
    • /
    • 1996
  • In this study, we have developed the stereolithography system that supports the development of a products. This paper presents the development of the stereolithography system. The system is composed of hardware, software and control part. The software converts a STL file to NC data and displays the monitoring figure in control part. The hardware part deals with structure of machine. The most important theme in this paper is LG-SLCAM software. This software can generate NC data and scanning condition data from a STL file semiautimatically. On the basis of three diensional shapes, it makes data for support structure from STL file. The effectiveness of using out stereolithography system is confirmed by processes of good development.

  • PDF

A Study on Algorithm Development of Offset Data Generation in Stereolithography (광조형법에 있어서 OFFSET정보생성 알고리즘 개발에 관한 연구)

  • Kim, Jun-An;Hong, Sam-Nyol;Paik, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.70-76
    • /
    • 1996
  • In the Stereolithography process, three-dimensional objects are built by sequentially curing, generated by horizontal slicing of a three-dimensional CAD model. The dimensional accuracy of a menufactured part depends on the accuracy of curing performed by laser beam radius and the half of curing width. When offsetting, some slices have collinear segments, coincident vertices, line jerks and open loops. After remove above issues we have correct offsets data. And in last step, these data are used to scan paths.

  • PDF