• Title/Summary/Keyword: Photophysics

Search Result 12, Processing Time 0.029 seconds

Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

  • Lee, Junghwa;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.881-885
    • /
    • 2014
  • Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ~300 fs component observed frequently in ESIPT dynamics arises from the $S_2{\rightarrow}S_1$ internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in $S_1$ state to the keto isomer in $S_2$ state.

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Suppression of the Methyl Radical Loss from Acetone Cation within (CH3COCH3)n{CH3COCH3}+ Clusters

  • Lee, Yong-Hoon;Oh, Myoung-Kyu;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1519-1524
    • /
    • 2008
  • We have investigated the photophysics of the acetone radical cation in the vacuum ultraviolet energy region by multiphoton ionization combined with time-of-flight mass spectrometry in a cluster beam. We have found that the loss of methyl radical from the acetone radical cations is remarkably suppressed at 10.5 eV when they are solvated by a few neutral acetone molecules. The cluster ion mass spectra obtained by nanosecond and picosecond laser pulses reveal that there are intermolecular processes, occurring in several tens of picoseconds, which are responsible for the survival of the acetone cations in clusters. This remarkable solvation effect on the yield of the methyl radical loss from the acetone cation can be rationalized by the intracluster vibrational energy redistribution and the self-catalyzed enolization which compete with the methyl radical loss process.

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Solvent-Induced Photoemissions of High-Energy Chromophores of Conjugated Polymer MEH-PPV: Role of Conformational Disorder

  • Traiphol, Rakchart;Charoenthai, Nipaphat
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.224-230
    • /
    • 2008
  • This study examined the photoemission behaviors of isolated chains of poly[2-methoxy, 5-(2'-ethylhexyloxy)-1,4-phenylenevinylene](MEH-PPV) dispersed in various solvents including dichloromethane, chloroform and tetrahydrofuran(THF). A change in polymer-solvent interactions in these solutions caused the MEH-PPV chains to adopt different local conformations, which in turn affected their radiative de-excitation pathways. For the polymer in dichloromethane and chloroform, in which the conjugated chains are relatively extended, photoemission occurs mostly at the long chromophores with lowest HOMO-LUMO energy gap. Their emission spectra showed a main peak at ${\sim}560\;nm$. Dual photoemission of high- and low-energy chromophores was observed when the conjugated chains were forced to partially collapse in a poor solvent THF. Novel high-energy peaks and a typical low-energy peak were detected at ${\sim}414\;nm$ and ${\sim}554\;nm$, respectively. The observation of the high-energy peaks indicates significant suppression of the intrachain energy transfer process, which was attributed to the increase in conformational disorder in the partially collapsed coils. An analysis of the excitation spectra suggests that the high-energy peaks belong to short chromophores constituting of one or two repeat units. This study systematically investigated the effects of polymer concentration, temperature and single bond defects along the backbone on the photoemission of the high-energy chromophores.

Photophysical Efficiency Factors of Singlet Oxygen Generation from Core-modified Trithiasapphyrin Derivatives

  • Ha, Jeong-Hyon;Kim, Min-Sun;Park, Yong-Il;Ryu, Shin-Hyung;Park, Mi-Gnon;Shin, Koo;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.281-285
    • /
    • 2002
  • The photophysical properties and the singlet oxygen generation efficiencies of meso-tetraphenyl-trithiasapphyrin $(S_3TPS)$ and meso-tetmkis(p-methoxy phenyl)-trithiasapphy rin ((p-MeO)-$S_3TPS$) have been investigated, utilizing steady-state and time-resolved spectroscopic methods to elucidate the possibility of their use as photosensitizers for photodynamic therapy (PDT). The observed photophysical properties were compared with those of other porphyrin-like photosensitizers in geometrical and electronic structural aspects, such as extended ${\pi}$ conjugation, structural distortion, and internal heavy atoms. The steady-state electronic absorption and fluorescence spectra were both red-shifted due to the extended ${\pi}$-conjugation. The fluorescence quantum yields were measured as very small. Even though intersystem crossing rates were expected to increase due to the increment of spin orbital coupling, the triplet quantum yields were measured as less than 0.15. Such characteristics can be ascribed to the more enhanced internal conversion rates compared with the intersystem crossing rates. Furthermore, the triplet state lifetimes were shortened to -1.0 ${\mu}s$ as expected. Therefore, the singlet oxygen quantum yields were estimated to be near zero due to the fast triplet state decay rates and the inefficient energy transfer to the oxygen molecule as well as the low triplet quantum yields. The low efficiencies of energy transfer to the oxygen molecule can be attributed to the lower oxidation potential and/or the energetically low lying triplet state. Such photophysical factors should be carefully evaluated as potential photosensitizers that have extended ${\pi}$-conjugation and heavy core atoms synthesized for red-shifted absorption and high triplet state quantum yields.

Synthesis and Characterization of Phosphorescent Platinum and Iridium Complexes of 6-Chloro-3-phenylpyridazine

  • Lee, Sang-Jin;Seok, Kang;Lee, Jae-Sung;Lee, Seung-Hee;Hwang, Kwang-Jin;Kim, Young-Kwan;Kim, Young-Sik
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.185-187
    • /
    • 2003
  • The preparation and the photophysics of organometallic Pt(II) and Ir(III) complexes with 6-ch1oro-3-phenylpyridazine (H6Clppdz) are reported. $K_2$PtCl$_4$ and IrCl$_3$ㆍn$H_{2}O$ cleanly cyclometalate with H6Clppdz, forming the corresponding chloro-bridged dimers, (6Clppdz)Pt($\mu$-Cl)$_2$Pt(6Clppdz) and (6Clppdz)$_2$Ir($\mu$-Cl)$_2$Ir(6Clppdz)$_2$ in good yield. These chloro-bridged dimers are cleaved with acetylacetone (Hacac) to give the corresponding monomer, (6Clppdz)Pt(acac) and (6Clppdz)$_2$ Ir(acac), respectively. Both complexes show bright orange luminescence at room temperature and the emission wavelengths are different depending on the metal and the structure of complexes. (6Clppdz)Pt(acac) shows two sharp emission bands in shorter wavelength ($\lambda$$_{em}$=541 and 580 nm), while (6Clppdz)$_2$ Ir(acac) shows a broad emission band in longer wavelength ($\lambda$$_{em}$=615 nm). Strong spinorbit coupling due to the heavy metal atom allows for the formally forbidden mixing of the $^1$MLCT with the $^3$MLCT and $^3$$\pi$-$\pi$$^{*}$ states.

  • PDF