Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.2.281

Photophysical Efficiency Factors of Singlet Oxygen Generation from Core-modified Trithiasapphyrin Derivatives  

Ha, Jeong-Hyon (Department of Chemistry, Yonsei University)
Kim, Min-Sun (Department of Chemistry, Yonsei University)
Park, Yong-Il (Department of Chemistry, Yonsei University)
Ryu, Shin-Hyung (Department of Electrical and Electronic Engineering)
Park, Mi-Gnon (Department of Electrical and Electronic Engineering)
Shin, Koo (Department of Chemistry, Sejong University)
Kim, Yong-Rok (Department of Chemistry, Yonsei University)
Publication Information
Abstract
The photophysical properties and the singlet oxygen generation efficiencies of meso-tetraphenyl-trithiasapphyrin $(S_3TPS)$ and meso-tetmkis(p-methoxy phenyl)-trithiasapphy rin ((p-MeO)-$S_3TPS$) have been investigated, utilizing steady-state and time-resolved spectroscopic methods to elucidate the possibility of their use as photosensitizers for photodynamic therapy (PDT). The observed photophysical properties were compared with those of other porphyrin-like photosensitizers in geometrical and electronic structural aspects, such as extended ${\pi}$ conjugation, structural distortion, and internal heavy atoms. The steady-state electronic absorption and fluorescence spectra were both red-shifted due to the extended ${\pi}$-conjugation. The fluorescence quantum yields were measured as very small. Even though intersystem crossing rates were expected to increase due to the increment of spin orbital coupling, the triplet quantum yields were measured as less than 0.15. Such characteristics can be ascribed to the more enhanced internal conversion rates compared with the intersystem crossing rates. Furthermore, the triplet state lifetimes were shortened to -1.0 ${\mu}s$ as expected. Therefore, the singlet oxygen quantum yields were estimated to be near zero due to the fast triplet state decay rates and the inefficient energy transfer to the oxygen molecule as well as the low triplet quantum yields. The low efficiencies of energy transfer to the oxygen molecule can be attributed to the lower oxidation potential and/or the energetically low lying triplet state. Such photophysical factors should be carefully evaluated as potential photosensitizers that have extended ${\pi}$-conjugation and heavy core atoms synthesized for red-shifted absorption and high triplet state quantum yields.
Keywords
Trithiasapphyrins; Triplet state; Singlet oxygen; Photophysics; Photodynamic therapy;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Roitman, L.; Ehrenberg, B.; Nitzan, Y.; Kral, V.; Sessler, J. L. Photochem. Photobiol. 1994, 60, 421   DOI   ScienceOn
2 Shionoya, M.; Furuta, H.; Lynch, V.; Harriman, A.; Sessler, J. L. J. Am. Chem. Soc. 1992, 114, 5714   DOI
3 Gentemann , S.; Medforth, C. J.; Forsyth, T. P.; Nurco, D. J.; Smith, K. M.; Fajer, J.; Holten, D. J. Am. Chem. Soc. 1994, 116, 7363   DOI   ScienceOn
4 Gentemann, S.; Medforth, C. J.; Ema, T.; Nelson , N. Y.; Smith, K. M.; Fajer, J.; Holten, D. Chem. Phys. Lett. 1995, 245, 441   DOI   ScienceOn
5 Hill, R. L.; Gouterman, M.; Ulman, A. Inorg. Chem. 1982, 21, 1450   DOI
6 Turro, N. J. Modern Molecular Photochemistry, Benjamin/Cummings Publishing: Menlo Park, U. S. A., 1978; p 183
7 Maiya, B. G.; Cyr, M.; Harriman, A.; Sessler, J. L. J. Phys. Chem. 1990, 94, 3597   DOI
8 Sessler, J. L.; Tvermoes, N. A.; Davis, J.; Anzenbacher Jr., P.; Jursikova, K.; Sato, W.; Seidel, D.; Lynch, V.; Black, C. B.; Try, A.; Andrioletti, B.; Hemmi, G.; Mody, T. D.; Magda, D. J.; Kral, V. Pure Appl. Chem. 1999, 71, 2009   DOI   ScienceOn
9 Srinivasan, A.; Pushpan, S. K.; Kumar, M. R.; Mahajan, S.; Chandrashekar, T. K.; Roy, R.; Ramamurthy, P. J. Chem. Soc., Perkin Trans. 2 1999, 961
10 Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry; Marcel Dekker: New York, U. S. A., 1993
11 Abdel-Shafi, A. A.; Beer, P. D.; Mortimer, R. J.; Wilkinson, F. J. Phys. Chem. A 2000, 104, 192   DOI   ScienceOn
12 Wilkinson, F.; Abdel-Shafi, A. A. J. Phys. Chem. A 1999, 103, 5425   DOI   ScienceOn
13 Lachish, D.; Infelta, P. P.; Gratzel, M. Chem. Phys. Lett. 1979, 62, 317   DOI   ScienceOn
14 Lisowski, J.; Sessler, J. L.; Lynch, V. Inorg. Chem. 1995, 34, 3567   DOI   ScienceOn
15 Zenkevich, E.; Sagun, E.; Knyukshto, V.; Shulga, A.; Mironov, A.; Efremova, O.; Bonnett, R.; Songca, S. P.; Kassem, M. J. Photochem. Photobiol. B Biol. 1996, 33, 171   DOI   ScienceOn
16 Shin, K.; Lim, C.; Choi, C.; Kim, Y.; Lee, C. Chem. Lett. 1999, 1331
17 Thompson, R. B.; Frisoli, J. K.; Lakowicz, J. R. Anal. Chem. 1992, 64, 2075   DOI
18 Strickler, S. J.; Berg, R. A. J. Chem. Phys. 1962, 37, 814   DOI
19 Angeli, N. G.; Lagorio, M. G.; Roman, E. A. S.; Dicelio, L. E. Photochem. Photobiol. 2000, 72, 49   DOI   ScienceOn
20 Darmanyan, A. P.; Arbogast, J. W.; Foote, C. S. J. Phys. Chem. 1991, 95, 7308   DOI
21 Schermann, G.; Schmidt, R.; Volcker, A.; Brauer, H.-D.; Mertes, H.; Franck, B. Photochem. Photobiol. 1990, 52, 741   DOI   ScienceOn
22 Ha, J.-H.; Jung, G. Y.; Kim, M.-S.; Lee, Y. H.; Shin, K.; Kim, R.-Y. Bull. Korean Chem. Soc. 2001, 22, 63
23 Iu, K.-K.; Ogilby, P. R. J. Phys. Chem. 1988, 92, 4662   DOI
24 Iu, K.-K.; Ogilby, P. R. J. Phys. Chem. 1987, 91, 1611   DOI
25 24. Darmanyan, A. P.; Lee, W.; Jenks, W. S. J. Phys. Chem. A 1999, 103, 2705   DOI   ScienceOn
26 Martire, D. O.; Jux, N.; Aramendia, P. F.; Negri, R. M.; Lex, J.; Braslavsky, S. E.; Schaffner, K.; Vogel, E. J. Am. Chem. Soc. 1992, 114, 9969   DOI