PHOTOPHYSICS AND PHOTOCHEMISTRY OF Cd(OH)₂ COATED QUANTIZED CdS AND COLLOIDAL CdS -TiO₂ SEMICONDUCTORS - STUDY OF CERTAIN REDOX REACTIONS AT THEIR INTERFACE Anil Kumar, D.P.S. Negi and Arvind Kumar Jain Department of Chemistry, University of Roorkee Roorkee - 247667, U.P. INDIA ## Abstract Coating of Cd(OH)₂ on CdS particles enhances their photostability, luminescing efficiency and emission lifetime . These particles were found to be inactive as sensitizer for most of the redox couples. It, however, initiated the photochemical reactions of tryptophan and indole-3-acetic acid like substrates . In case of tryptophan ,the photogenerated hole on the particle was intercepted by the bulk substrate (ϕ -tryp = 0.22) to produce 5- hydroxytryptophan (ϕ oh-tryp = 0.08) as one of the main products of oxidation . The presence of tryptophan quenches the bandgap emission of CdS and reduces its emission lifetime. Emission experiments indicated the nature of reactive hole in stoichiometric Q-CdS to be different to that of Cd(OH)₂ coated Q-CdS . Shallowly trapped hole has been assigned to participate in the oxidation via hydrogen bonding interaction involving the surface of the particle and the substrate. The coupling of Cd(OH)₂ coated Q-CdS with colloidal TiO₂ causes the quenching of the bandgap emission of CdS but the red emission is not affected appreciably . For a typical $2x10^4$ mol dm^3 of TiO₂ , the average emission lifetime is reduced from 26.4 ns to 6.8 ns . The extent of charge separation in the photocatalyst is affected by concentration of both TiO₂ and the redox couple. Charge carriers trapped in shallow traps are efficiently scavenged by the indole-O₂ redox couple to produce indigo with a quantum efficiency of 0.08 . Doping of $Ag^+(3.5x10^{-7}\ mol\ dm^{-3})$ to TiO₂ prior to coupling with Cd(OH)₂ coated Q-CdS enhances the ϕ_{indigo} to 0.15 whereas about three fold higher silver ($9\times10^{-6}\ mol\ dm^{-3}$) was needed to be doped to the Cd(OH)₂ coated Q-CdS to cause the catalytic effect of similar magnitude . For Ag^+ , Cu^{2+} and Mn^{2+} , the order of catalytic activity was found to be $Ag^+ > Cu^{2+} > Mn^{2+}$. Higher catalytic action of Ag^+ is understood in terms of the positive redox potential of the Ag^-/Ag couple which intercepts the conduction band electrons and reduces the e^- h recombination . Mechanism of the studied reactions will be discussed .