• 제목/요약/키워드: Photonic and optical interconnect

검색결과 5건 처리시간 0.017초

10 Gbps Transimpedance Amplifier-Receiver for Optical Interconnects

  • Sangirov, Jamshid;Ukaegbu, Ikechi Augustine;Lee, Tae-Woo;Cho, Mu Hee;Park, Hyo-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.44-49
    • /
    • 2013
  • A transimpedance amplifier (TIA)-optical receiver (Rx) using two intersecting active feedback system with regulated-cascode (RGC) input stage has been designed and implemented for optical interconnects. The optical TIA-Rx chip is designed in a 0.13 ${\mu}m$ CMOS technology and works up to 10 Gbps data rate. The TIA-Rx chip core occupies an area of 0.051 $mm^2$ with power consumption of 16.9 mW at 1.3 V. The measured input-referred noise of optical TIA-Rx is 20 pA/${\surd}$Hz with a 3-dB bandwidth of 6.9 GHz. The proposed TIA-Rx achieved a high gain-bandwidth product per DC power figure of merit of 408 $GHz{\Omega}/mW$.

CPU 기술과 미래 반도체 산업 (I) (CPU Technology and Future Semiconductor Industry (I))

  • 박상기
    • 전자통신동향분석
    • /
    • 제35권2호
    • /
    • pp.89-103
    • /
    • 2020
  • Knowledge of the technology, characteristics, and market trends of the latest CPUs used in smartphones, computers, and supercomputers and the research trends of leading US university experts gives an edge to policy-makers, business executives, large investors, etc. To this end, we describe three topics in detail at a level that can help educate the non-majors to the extent possible. Topic 1 comprises the design and manufacture of a CPU and the technology and trends of the smartphone SoC. Topic 2 comprises the technology and trends of the x86 CPU and supercomputer, and Topic 3 involves an optical network chip that has the potential to emerge as a major semiconductor chip. We also describe three techniques and experiments that can be used to implement the optical network chip.

CPU 기술과 미래 반도체 산업 (III) (CPU Technology and Future Semiconductor Industry (III))

  • 박상기
    • 전자통신동향분석
    • /
    • 제35권2호
    • /
    • pp.120-136
    • /
    • 2020
  • Knowledge of the technology, characteristics, and market trends of the latest CPUs used in smartphones, computers, and supercomputers and the research trends of leading US university experts gives an edge to policy-makers, business executives, large investors, etc. To this end, we describe three topics in detail at a level that can help educate the non-majors to the extent possible. Topic 1 comprises the design and manufacture of a CPU and the technology and trends of the smartphone SoC. Topic 2 comprises the technology and trends of the x86 CPU and supercomputer, and Topic 3 involves an optical network chip that has the potential to emerge as a major semiconductor chip. We also describe three techniques and experiments that can be used to implement the optical network chip.

CPU 기술과 미래 반도체 산업 (II) (CPU Technology and Future Semiconductor Industry (II))

  • 박상기
    • 전자통신동향분석
    • /
    • 제35권2호
    • /
    • pp.104-119
    • /
    • 2020
  • Knowledge of the technology, characteristics, and market trends of the latest CPUs used in smartphones, computers, and supercomputers and the research trends of leading US university experts gives an edge to policy-makers, business executives, large investors, etc. To this end, we describe three topics in detail at a level that can help educate the non-majors to the extent possible. Topic 1 comprises the design and manufacture of a CPU and the technology and trends of the smartphone SoC. Topic 2 comprises the technology and trends of the x86 CPU and supercomputer, and Topic 3 involves an optical network chip that has the potential to emerge as a major semiconductor chip. We also describe three techniques and experiments that can be used to implement the optical network chip.

Surface Treatment of Ge Grown Epitaxially on Si by Ex-Situ Annealing for Optical Computing by Ge Technology

  • Chen, Xiaochi;Huo, Yijie;Cho, Seongjae;Park, Byung-Gook;Harris, James S. Jr.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권5호
    • /
    • pp.331-337
    • /
    • 2014
  • Ge is becoming an increasingly popular semiconductor material with high Si compatibility for on-chip optical interconnect technology. For a better manifestation of the meritorious material properties of Ge, its surface treatment should be performed satisfactorily before the electronic and photonic components are fabricated. Ex-situ rapid thermal annealing (RTA) processes with different gases were carried out to examine the effects of the annealing gases on the thin-film quality of Ge grown epitaxially on Si substrates. The Ge-on-Si samples were prepared in different structures using the same equipment, reduced-pressure chemical vapor deposition (RPCVD), and the samples annealed in $N_2$, forming gas (FG), and $O_2$ were compared with the unannealed (deposited and only cleaned) samples to confirm the improvements in Ge quality. To evaluate the thin-film quality, room-temperature photoluminescence (PL) measurements were performed. Among the compared samples, the $O_2$-annealed samples showed the strongest PL signals, regardless of the sample structures, which shows that ex-situ RTA in the $O_2$ environment would be an effective technique for the surface treatment of Ge in fabricating Ge devices for optical computing systems.