• Title/Summary/Keyword: Photon response

Search Result 108, Processing Time 0.026 seconds

Search for Dark Photon in e+e- → A'A' Using Future Collider Experiments

  • Kihong Park;Kyungho Kim;Alexei Sytov;Kihyeon Cho
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.259-266
    • /
    • 2023
  • The Standard Model (SM) does not provide an information for 26% of dark matter of the universe. In the dark sector, dark matter is supposed to be linked with the hypothetical particles called dark photons that have similar role to photons in electromagnetic interaction in the SM. Besides astronomical observation, there are studies to find dark matter candidates using accelerators. In this paper, we searched for dark photons using future electron-positron colliders, including Circular Electron Positron Collider (CEPC)/CEPC, Future Circular Collider (FCC-ee)/Innovative Detector for Electron-positron Accelerator (IDEA), and International Linear Collider (ILC)/International Large Detector (ILD). Using the parameterized response of the detector simulation of Delphes, we studied the sensitivity of a double dark photon mode at each accelerator/detector. The signal mode is double dark photon decay channel, e+e- → A'A', where A' (dark photon with spin 1) decaying into a muon pair. We used MadGraph5 to generate Monte Carlo (MC) events by means of a Simplified Model. We found the dark photon mass at which the cross-sections were the highest for each accelerator to obtain the maximum number of events. In this paper we show the expected number of dark photon signal events and the detector efficiency of each accelerator. The results of this study can facilitate in the dark photon search by future electron-positron accelerators.

Photon Energy Dependence of the Sensitivity of LiF TLDs Loaded with Thin Material (얇은 박막을 얹은 TLD 반응감도의 광자 에너지에 대한 의존성)

  • Min Byongim J;Kim Sookil;Loh John J.K;Cho Young Kap
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.256-260
    • /
    • 1999
  • Purpose : An investigation has been carried out on the factors which affect the response reading of thermoluminescent dosimeters (TLD-100) loaded with thin material in high energy Photon. The aim of the study was to assess the energy response of TLD-100 to the therapeutic ranges of photon beam. Materials and Methods : In this technique, TLD-100 (abbreviated as TLD) chips and three different thin material (Tin, Gold, and Tissue equivalent plastic plate) which mounted on the TLD chip were used in the clinical photon beam. The thickness of each metal plates was 0.1 mm and TE plastic plate was 1 mm thick. These compared with the photon energy dependence of the sensitivities of TLD (normal chip), TLD loaded with Tin or Gold plate, for the photon energy range 6 MV to 15 MV, which was of interest in radiotherapy. Results : The enhancement of surface dose in the TLD with metal plate was clearly detected. The TLD chips with a Gold plate was found to larger response by a factor of 1.83 in 10 MV photon beam with respect to normal chip. The sensitivity of TLD loaded with Tin was less than that for normal TLD and TLD loaded with Gold. The relative sensitivity of TLD loaded with metal has little energy dependence. Conclusion : The good stability and linearity with respect to monitor units of TLD loaded with metal were demonstrated by relative measurements in high energy Photon ($6\~15$ MV) beams. The TLD laminated with metals embedded system in solid water phantom is a suitable detector for relative dose measurements in a small beam size and surface dose.

  • PDF

GAMMA-SPECTROMETRY IN ENVIRONMENTAL MONITORING OF NUCLEAR POWER

  • Cechak, Tomas;Gerndt, Josef;Kluson, Jaroslav;Musilek, Ladislav;Thinova, Lenka
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.203-206
    • /
    • 2001
  • The mathematical processing (unfolding) of pulse height spectra from a scintillation detector helps to calculate the photon fluence rate energy distribution in a measured photon field. The data processing is based on the knowledge of detection system response function and directional dependence respectively. The experimental results of the photon fields measurements in the vicinity of the spent fuel temporary storage and inside the storage hall are presented. The containers Castor 440 are used for temporary storing of the burnt up fuel assemblies in the Czech nuclear power plant Dukovany. A set of periodical measurements was performed in order to get basic information on the time dependence of the photon fields spatial distributions and spectral characteristics in the temporary storage hall and its vicinity. The photon fields were measured by the scintillation system. The obtained photon fields spatial distributions and spectral characteristics present the information on the radiation hazard in the storage.

  • PDF

Extensive investigations of photon interaction properties for ZnxTe100- x alloys

  • Singh, Harinder;Sharma, Jeewan;Singh, Tejbir
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1364-1371
    • /
    • 2018
  • An extensive investigation of photon interaction properties has been made for $Zn_xTe_{100-x}$ alloys (where x = 5, 20, 30, 40, 50) to explore its possible use in sensing and shielding gamma radiations. The results show better and stable response of ZnTe alloys for various photon interaction properties over the wide energy range, with an additional benefit of ease in fabrication due to lower melting points of Zn and Te. Mass attenuation coefficient values show strong dependence on photon energy as well as composition. Effective atomic number has maximum value for $Zn_5Te_{95}$ and lowest for $Zn_{50}Te_{50}$ in the entire energy region. The alloy sample with maximum $Z_{eff}$ shows minimal value of $N_e$ and vice versa. Mean free path follows inverse trend as observed for mass attenuation coefficient. The exposure and energy absorption buildup factors depend upon photon energy, penetration thickness and composition (effective atomic number) of $Zn_xTe_{100-x}$ alloys. It finds its application for sensing and shielding from highly energetic and highly penetrating photons at sites where radioactive materials were used and visibility of material is not a big constraint. Further, energy down conversion property of ZnTe alloys with subsequent emission in green band suggests its potential use in sensing gamma photons.

Response of LiF Thermoluminescent Dosimeter to Gamma-Rays as a Cavity Detector (LiF 열형광선량계(熱螢光線量計)의 감마선(線)에 대한 공동검출기(空洞檢出器)로서의 감응(感應))

  • Ha, C.W.;Yook, C.C.;Jun, J.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.10-14
    • /
    • 1976
  • Influence of the cavity size on the response of LiF TLD was theoretically investigated for a presumed system of spherical TLD cavity imbedded in a medium of polyethylene. Calculation of the response for different radii of the spherical cavity was carried out as a function of incident photon energy, applying recent cavity theory. The range of the radii covers 1.578 to 6.528 mm, while that of the incident photon energies extends from 0.02 to 3.0 MeV. As a results, the response of the LiF TLD imbedded in a medium as a cavity was found to be functions of its own size as wall as the incident photon energy.

  • PDF

Dosimetric Properties of LiF:Mg,Cu,Na,Si TL pellets (LiF:Mg,Cu,Na,Si TL 소자의 선량계적 특성)

  • Nam, Young-Mi;Kim, Jang-Lyul;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets were developed for application in radiation dosimetry. In the present study, the TL dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets have been investigated for emission spectrum, dose response, energy response, and fading characteristics. LiF:Mg,Cu,Na,Si TL pellets were made by using a sintering process, that is, pressing and heat treatment from TL powders. Photon irradiations for the experiments were carried out using X-ray beams and a $^{137}Cs$ gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and $10^{-6}-10^{-2}\;Gy$, respectively. The glow curves were measured with a manual type TLD reader(System 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of $5^{\circ}C\;s^{-1}$, the main dosimetric peak of glow curve appeared at $234^{\circ}C$, the activation energy was 2.34 eV and frequency factor was $1.00{\times}10^{23}$. TL emission spectrum is appeared at the blue region centered at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to $^{137}Cs$ response were within ${\pm}20%$ at overall photon energy region. The fading of TL sensitivity of the pellets stored at the room temperature was not found for one year.

  • PDF

Preparation and Nonlinear Optical Properties of CuCl-doped Nonlinear Optical Glasses : II. Nonlinear Optical Properties (CuCl 미립자가 분산된 비선형 광학유리의 제조와 비선형 광특성: II. 비선형 광특성)

  • 윤영권;한원택;이민영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 1997
  • The third order nonlinear optical susceptibilities, {{{{ chi }}(3), of the CuCl doped alumino-borosilicate glasses were measured by the two beam configuration DFWM method and the absorption saturation method, and the measured {{{{ chi }}(3) values were about 10-8 esu in both methods. The response time was estimated to be about 105ps from the time decay curve of the luminescence spectra obtained by time-correlated single-photon counting (TCSPC) method.

  • PDF

Construction and Performance Characterization of Time-correlated Single Photon Counting System having Picosecond Resolution (피코초 분해능의 시간 상관 단광자 계수 장치 구성 및 동작 특성)

  • 이민영;김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.90-99
    • /
    • 1994
  • Picosecond time-correlated single photon counting system and time-resolved luminescence spectrometer were constructed, employing a mode-locked picosecond laser, fast electronics, and microchannel plate tube. It has been shown that the instrument response function critically depends on laser pulse shape, timing jitter and walk of the electronics, and characteristics of detector and amplifier. Correcting time dispersion in the optical system, the best instrument response function obtained appears to be 25 ps, which made it possible to measure the luminescence lifetime with less than 10 ps resolution in the picosecond to microsecond range. range.

  • PDF

Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code

  • Demir, Nilgun;Kuluozturk, Zehra Nur
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3759-3763
    • /
    • 2021
  • In this study, 3" × 3" NaI(Tl) detector, which is widely used in gamma spectroscopy, was modeled with FLUKA code, and calculations required to determine the detector's energy resolution were reported. Photon beams with isotropic distribution with 59, 81, 302, 356, 511, 662, 835, 1173, 1275, and 1332 keV energy were used as radiation sources. The photon pulse height distribution of the NaI(Tl) without influence of its energy resolution obtained with FLUKA code has been converted into a real NaI(Tl) response function, using the necessary conversion process. The photon pulse height distribution simulated in the conversion process was analyzed using the ROOT data analysis framework. The statistical errors of the simulated data were found in the range of 0.2-1.1%. When the results, obtained with FLUKA and ROOT, are compared with the literature data, it is seen that the results are in good agreement with them. Thus, the applicability of this procedure has been demonstrated for the other energy values mentioned.

Toll-like Receptor 2 is Dispensable for an Immediate-early Microglial Reaction to Two-photon Laser-induced Cortical Injury In vivo

  • Yoon, Heera;Jang, Yong Ho;Kim, Sang Jeong;Lee, Sung Joong;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.461-465
    • /
    • 2015
  • Microglia, the resident macrophages in the central nervous system, can rapidly respond to pathological insults. Toll-like receptor 2 (TLR2) is a pattern recognition receptor that plays a fundamental role in pathogen recognition and activation of innate immunity. Although many previous studies have suggested that TLR2 contributes to microglial activation and subsequent pathogenesis following brain tissue injury, it is still unclear whether TLR2 has a role in microglia dynamics in the resting state or in immediate-early reaction to the injury in vivo. By using in vivo two-photon microscopy imaging and $Cx3cr1^{GFP/+}$ mouse line, we first monitored the motility of microglial processes (i.e. the rate of extension and retraction) in the somatosensory cortex of living TLR2-KO and WT mice; Microglial processes in TLR2-KO mice show the similar motility to that of WT mice. We further found that microglia rapidly extend their processes to the site of local tissue injury induced by a two-photon laser ablation and that such microglial response to the brain injury was similar between WT and TLR2-KO mice. These results indicate that there are no differences in the behavior of microglial processes between TLR2-KO mice and WT mice when microglia is in the resting state or encounters local injury. Thus, TLR2 might not be essential for immediate-early microglial response to brain tissue injury in vivo.