• 제목/요약/키워드: Photon Network

Search Result 27, Processing Time 0.03 seconds

Building a multiplayer VR game server using Photon Unity Network (Photon Unity Network를 이용한 멀티플레이 게임 서버 구축)

  • Seong, Seung-min;Kim, yu-min;Choi, kyu-min;Shin, jun-pyo;Lee, byung-kwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.249-251
    • /
    • 2021
  • 본 논문에서는 Photon Unity Network[1]를 사용하여 멀티플레이 VR게임 개발 방법을 제안한다. Unity 3D와 Oculus Framework를 활용하여 플레이어 기능을 구현했다. 그리고 Photon Unity Network를 이용하여 서버와 여러 명의 플레이어를 연결해 줄 수 있다.

  • PDF

Implementation of Multi-games using Photon Server (Hide and Escape) (포톤 서버를 사용한 멀티게임 구현(Hide & Escape))

  • Shim, Han-Moi;Bang, Jin-Wook;Kim, In-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.69-70
    • /
    • 2022
  • 본 논문에서는 Photon Network를 사용하여 경찰과 도둑 컨셉으로 5명이 함께 즐길 수 있는 Multi Game을 구현하였다. 서버는 리슨 서버 방식으로 Master Client가 게임을 시작하면 Game에 참가한 모든 Player는 Photon Network의 RPC 기능을 사용하여 Player의 동작, Game 진행 상황 등을 실시간으로 Server에 동기화한다.

  • PDF

Implementation of VR Multi-games using Photon Network, 'Arcade VR Battle' (포톤 네트워크를 이용한 VR 멀티게임 구현, 'Arcade VR Battle')

  • Han-Moi Shim;Jun-Han Shin;Geon Namgung;Min-Woong Lee;Yong-Sik Kwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.467-468
    • /
    • 2023
  • 현재 게임 시장에서 VR 게임이 가지는 영향력은 점차 증가하는 추세이다. 기존의 VR게임들은 대부분 Multi-Play를 지원하지 않는다. 이에 따라 본 논문에서는 Photon Network와 XR Plugin을 사용하여 2명의 플레이어가 함께 즐길 수 있는 Arcade 장르의 VR 경쟁 Multi-Game을 구현하였다. 이에 필요한 서버는 리슨 서버 방식으로 Master Client가 게임을 시작하면, Game에 참가한 다른 Client Player는 Photon Network의 RPC 기능을 사용하고 Player의 동작, Game 진행 상황 등을 실시간으로 Server에 동기화하여 Multi-Play게임을 할 수 있다.

  • PDF

Security Analysis of the PHOTON Lightweight Cryptosystem in the Wireless Body Area Network

  • Li, Wei;Liao, Linfeng;Gu, Dawu;Ge, Chenyu;Gao, Zhiyong;Zhou, Zhihong;Guo, Zheng;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.476-496
    • /
    • 2018
  • With the advancement and deployment of wireless communication techniques, wireless body area network (WBAN) has emerged as a promising approach for e-healthcare that collects the data of vital body parameters and movements for sensing and communicating wearable or implantable healthful related information. In order to avoid any possible rancorous attacks and resource abuse, employing lightweight ciphers is most effective to implement encryption, decryption, message authentication and digital signature for security of WBAN. As a typical lightweight cryptosystem with an extended sponge function framework, the PHOTON family is flexible to provide security for the RFID and other highly-constrained devices. In this paper, we propose a differential fault analysis to break three flavors of the PHOTON family successfully. The mathematical analysis and simulating experimental results show that 33, 69 and 86 random faults in average are required to recover each message input for PHOTON-80/20/16, PHOTON-160/36/36 and PHOTON-224/32/32, respectively. It is the first result of breaking PHOTON with the differential fault analysis. It provides a new reference for the security analysis of the same structure of the lightweight hash functions in the WBAN.

A Monochromatic Soft X-ray Generation from Femtosecond Laser-produced Plasma with Aluminum

  • Son, Joon-Gon;Hwang, Byung-Jun;Seo, Okkyun;Kim, Jae Myung;Noh, Do Young;Ko, Do-Kyeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1834-1839
    • /
    • 2018
  • A tabletop ultrafast soft x-ray has been generated from the laser-produce plasma with a femtosecond pulsed Ti:Sapphire laser. The estimated total flux of Al $K{\alpha}$ is of $2.2{\times}10^9photons/sec$ in $4{\pi}$ radian and the parameters related to the optical performance were obtained. The tungsten/silicon multilayer, flat quartz and bent thallium acid phthalate (TLAP) crystal were used for monochromatization of soft x-ray to refine the aluminum $K{\alpha}$ radiation and compared the respective value of $E/{\Delta}E$. To estimate the size of the x-ray source beam generated by a fs laser, the approximation using the FWHM obtained from the x-ray beam scan near the focal point was discussed, and the size of the diameter was about $9.76{\mu}m$.

Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network (SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템)

  • Kim, Dong Yeop;Lee, Jae Min;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

A Study on the Implementation of Smart Farm Environment Control System Using Unity and Photon (Unity와 Photon을 활용한 스마트 팜 환경 제어 시스템 구현에 관한 연구)

  • Jung, Hyeon Ji;Lee, Wan Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.104-107
    • /
    • 2021
  • Unity programs are largely recognized as game development tools. However, it has many functions built in, so it can be applied to various fields as well as game development. Therefore, in this paper, we propose a smart farm environmental control program using Unity and Photon. The proposed program has vast compatibility that is not limited to specific devices, and it is very easy to build network systems for remote control. In addition, the proposed programs were installed on various devices such as pc and smartphones, making it easy to control the smart farm environment system. Through experiments, it was confirmed that data transmission and reception between Windows and Android, other operating system environments, and that smart farm systems were operating normally.

Comparison of the standards for absorbed dose to water of the IAEA and the KRISS, Korea in accelerator photon beams

  • L. Czap;I.J. Kim;J.I. Park;C.-Y. Yi;Y. Kim;Z. Msimang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2698-2703
    • /
    • 2024
  • A bilateral comparison was conducted between the International Atomic Energy Agency (IAEA) and the Korea Research Institute of Standards and Science (KRISS) to measure the absorbed dose to water in accelerator photon beams. KRISS served as a linking laboratory to compare the IAEA standard with the key comparison reference value (KCRV) of the BIPM.RI(I)-K6 program, in which KRISS participated in 2017. Two ionization chambers from the IAEA were used as transfer instruments for the comparison. Both laboratories measured the calibration coefficients of these instruments and calculated the ratios. The ratio of the KRISS standard to the KCRV was applied to obtain the degree of equivalence of the IAEA, along with its uncertainty. The largest deviation of the IAEA measurement from the KCRV was 3.4 mGy/Gy, significantly smaller than the expanded uncertainty of 10.7 mGy/Gy (k = 2, 95% level of confidence). This study demonstrates the equivalence of IAEA's measurement standard for accelerator photon beams to other primary standard dosimetry laboratories. It provides evidence for the satisfactory operation of IAEA's quality management system and enhances the international credibility of the IAEA SSDL network, particularly in high-energy accelerator photon beams from linear accelerators.

Characterization of small single photon avalanche diode fabricated using standard 180 nm CMOS process for digital SiPM

  • Jinseok Oh;Hakcheon Jeong;Min Sun Lee;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3076-3083
    • /
    • 2024
  • In this work, single photon avalanche diodes (SPADs) were fabricated using the standard 180 nm complementary metal-oxide semiconductor process. Their small size of 15-16 µ m and low operating voltage made it possible to easily integrate them with readout circuits for compact on-chip sensors, particularly those used in the radiation sensor network of a nuclear plant. Four architectures were proposed for the SPADs, with a shallow trench isolation (STI) guard ring and different depletion regions designed to demonstrate the main performance parameters in each experimental configuration. The wide absorption region structure with PSD and a deep N-well could achieve a uniform electric field, resulting in a stable dark count rate (DCR). Additionally, the STI guard ring was implanted to mitigate the premature edge breakdown. A breakdown voltage was achieved for a low operating voltage of 10.75 V. The DCR results showed 286.3 Hz per ㎛2 at an excess voltage of 0.04 V. A photon detection probability of 21.48% was obtained at 405 nm.