• 제목/요약/키워드: Photometric Calibration

검색결과 45건 처리시간 0.028초

Observational Evidence of Merging and Accretion in the Milky Way Galaxy from the Spatial Distribution of Stars in Globular Clusters

  • Chun, Sang-Hyun
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.76-76
    • /
    • 2013
  • The current hierarchical model of galaxy formation predicts that galaxy halos contain merger relics in the form of long stellar streams. In order to find stellar substructures in galaxy, we focused our investigation on the stellar spatial density around globular clusters and on the quantitative properties of the evolved sequences in the color-magnitude diagrams (CMDs). First, we investigated the spatial configuration of stars around five metal-poor globular clusters in halo region (M15, M30, M53, NGC 5053, and NGC 5466) and one metal-poor globular cluster in bulge region (NGC 6626). Our findings indicate that all of these globular clusters show strong evidence of extratidal features in the form of extended tidal tails around the clusters. The orientations of the extratidal features show the signatures of tidal tails tracing the clusters' orbits and the effects of dynamical interactions with the galaxy. These features were also confirmed by the radial surface density profiles and azimuthal number density profiles. Our results suggest that these six globular clusters are potentially associated with the satellite galaxies merged into the Milky Way. Second, we derived the morphological parameters of the red giant branch (RGB) from the near-infrared CMDs of 12 metal-poor globular clusters in the Galactic bulge. The photometric RGB shape indices such as colors at fixed magnitudes, magnitudes at fixed colors, and the RGB slope were measured for each cluster. The magnitudes of the RGB bump and tip were also estimated. The derived RGB parameters were used to examine the overall behavior of the RGB morphology as a function of cluster metallicity. The behavior of the RGB shape parameters was also compared with the previous observational calibration relation and theoretical predictions of the Yonsei-Yale isochrones. Our results of studies for stellar spatial distribution around globular clusters and the morphological properties of RGB stars in globular clusters could add further observational evidence of merging scenario of galaxy formation.

  • PDF

ADVANTAGES OF THE AKARI FIR ALL-SKY MAPS

  • Doi, Yasuo;Takita, Satoshi;Ootsubo, Takafumi;Arimatsu, Ko;Tanaka, Masahiro;Morishima, Takahiro;Kawada, Mitsunobu;Matsuura, Shuji;Kitamura, Yoshimi;Hattori, Makoto;Nakagawa, Takao;White, Glenn;Ikeda, Norio
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.11-15
    • /
    • 2017
  • We present the AKARI far-infrared (FIR) all-sky maps and describe its characteristics, calibration accuracy and scientific capabilities. The AKARI FIR survey has covered 97% of the whole sky in four photometric bands, which cover continuously 50-180 micron with band central wavelengths of 65, 90, 140, and 160 microns. The data have been publicly released in 2014 (Doi et al., 2015) with improved data quality that have been achieved since the last internal data release (Doi et al., 2012). The accuracy of the absolute intensity is ${\leq}10%$ for the brighter regions. Quantitative analysis of the relative intensity accuracy and its dependence upon spatial scan numbers has been carried out. The data for the first time reveal the whole sky distribution of interstellar matter with arcminute-scale spatial resolutions at the peak of dust continuum emission, enabling us to investigate large-scale distribution of interstellar medium in great detail. The filamentary structure covering the whole sky is well traced by the all-sky maps. We describe advantages of the AKARI FIR all-sky maps for the study of interstellar matter comparing to other observational data.

흐름주입 분석에 의한 아염소산 이온의 분광광도법 정량 (Photometric Determination of Chlorite ion by Flow Injection Analysis)

  • 최용욱;이수영;김미경;박성호
    • 대한화학회지
    • /
    • 제44권6호
    • /
    • pp.556-562
    • /
    • 2000
  • 간접 요오드화법의 UV 검출을 이용한 흐름주입분석에 의한 아염소산 이온의 정량에 관하여 연구하였다. 산성 조건하에서 아염소산은 요오드화 이온을 요오드로 산화시키고 자신은 염화 이온으로 환원된다. UV 370nm에서 노란 색으로 발색된 요오드의 흡광도를 측정하여 아염소산 이온을 간접적으로 정량 하였다. 흐름주입분석-UV검출 장치를 이용한 무기성 소독부산물인 아염소산 이온을 선택적으로 정량하기 위한 분석 인자로서 혼합 및 반응코일 길이, 산성 용리액의 pH, 요오드화 이온의 농도, 주입고리부피, 반응 온도, 유속을 최적화 하였다. 조제수로부터 산화제나 방해 물질들을 제거하기 위한 가리움제를 조사하였다. 아염소산 이온에 대한 0.002~0.2 mg/L의 선형 농도 범위에서 검정곡선은 0.999이상의 상관계수를 나타내였다. 아염소산 이온의 검출한계는 0.18 ${\mu}g/L$이었다.

  • PDF

테들러 백 샘플러의 대체 소재로서 폴리에스터 알루미늄 백에 대한 예비연구: 환원황화합물을 중심으로 (A Preliminary Study on Polyester Aluminum Bag as the Possible Substitute for Tedlar Bag Sampler in RSC Analysis)

  • 김기현;조상희
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.454-459
    • /
    • 2011
  • In this study, the recovery rate of Tedlar bag (T) sampler was investigated in comparison to polyester aluminum bag (P) sampler. To derive the comparative data sets for the relative performance between different samplers, a series of calibration experiments were performed by using 1 ppb standard of four offensive reduced sulfur compounds (RSC) odorants ($H_2S$, $CH_3SH$, DMS, and DMDS) along with $SO_2$ and $CS_2$. All the analysis was made by gas chromatography/pulsed flame photometric detector (GC/PFPD) combined with air server/thermal desorber (AS/TD). The measurement data were obtained by loading gaseous standards (1 ppb) at 3 injection volumes (250, 500 and 1,000 mL) at three intervals (0, 24 and 72 hrs). The recovery rates (RR) of P sampler were computed against the slope values of T sampler. According to our analysis, P sampler exhibits slightly enhanced loss relative to T, especially with light RSCs ($H_2S$ and $CH_3SH$). At day 0, RR for the two were 88 and 85%, respectively. Such reduction proceeded rather rapidly in the case of $H_2S$ through time. However, P sampler was more stable to store $SO_2$ unlike others. Despite slightly reduced recovery, P sampler appears as a good replacement of T sampler.

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.