• 제목/요약/키워드: Photoluminescence spectroscopy

검색결과 272건 처리시간 0.023초

Synthesis of N,N-Diaryl-(pyridin-3-yl)pyrimidin-2-amine Derivatives and Their Photochemical Properties

  • El-Deeb, Ibrahim Mustafa;Lee, So-Ha
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.291-298
    • /
    • 2008
  • Although the pyrimidine derivatives were obtained in low yields ranging from 8% to 20%, we reported the successful preparation of N,N-diaryl-pyrimidin-2-amine derivatives starting from the corresponding 2-aminopyrimidines (1a-1c), by direct palladium-catalyzed arylation using different arylbromides. The reasons of low yields are thought to be the electronic and steric effects by the neighboring aromatic systems. The absorption spectra and photoluminescent spectra of compounds (3a 3g and 4a-4c) were measured using dichloromethane on the concentration of 25 mM by UV vis spectroscopy and luminescent spectroscopy. Pyrimidine derivatives 4a, 4b, and 4c showed moderate emission maxima at 474 nm, 481 nm, and 367 nm, respectively, while other compounds showed very weak photoluminescence or no photoluminescence at all.

Strong Red Photoluminescence from Nano-porous Silicon Formed on Fe-Contaminated Silicon Substrate

  • Kim, Dong-Lyeul;Lee, Dong-Yul;Bae, In-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권5호
    • /
    • pp.194-198
    • /
    • 2004
  • The influences of the deep-level concentration of p-type Si substrates on the optical properties of nano-porous silicon (PS) are investigated by deep level transient spectroscopy (DLTS) and photoluminescence (PL). Utilizing a Si substrate with Fe contaminations significantly enhanced the PL intensity of PS. All the PS samples formed on Fe-contaminated silicon substrates had stronger PL yield than that of reference PS without any intentional Fe contamination but the emission peak is not significantly changed. For the PS 1000 sample with Fe contamination of 1,000 ppb, the maximum PL intensity showed about ten times stronger PL than that of the reference PS sample. From PL and DLTS results, the PL efficiency strongly depends on the Fe-related trap concentration in Si substrates.

원자층 증착법으로 성장된 ZnO 박막의 질소 도핑에 대한 연구 (Nitrogen Doping Characterization of ZnO Prepared by Atomic Layer Deposition)

  • 김도영
    • 한국전기전자재료학회논문지
    • /
    • 제27권10호
    • /
    • pp.642-647
    • /
    • 2014
  • For feasible study of opto-electrical application regarding to oxide semiconductor, we implemented the N doped ZnO growth using a atomic layer deposition technique. The p-type ZnO deposition, necessary for ZnO-based optoelectronics, has considered to be very difficulty due to sufficiently deep acceptor location and self-compensating process on doping. Various sources of N such as $N_2$, $NH_3$, NO, and $NO_2$ and deposition techniques have been used to fabricate p-type ZnO. Hall measurement showed that p-type ZnO was prepared in condition with low deposition temperature and dopant concentration. From the evaluation of photoluminescence spectroscopy, we could observe defect formation formed by N dopant. In this paper, we exhibited the electrical and optical properties of N-doped ZnO thin films grown by atomic layer deposition with $NH_3OH$ doping source.

천연과 CVD 합성 다이아몬드의 감별을 위한 물성 연구 (Properties of the Natural and CVD Synthetic Diamonds for Identification)

  • 김연우;송정호;노윤영;송오성
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.350-356
    • /
    • 2014
  • Recently, Chemical Vapor Deposition (CVD) synthetic diamonds have been introduced to the jewelry gem market, as CVD technology has been making considerable advances. Unfortunately, CVD diamonds are not distinguishable from natural diamonds when using the conventional gemological characterization method. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. In our study, we employed optical microscopy and spectroscopy techniques, including Fourier transform infra-red (FT-IR), UV-VIS-NIR, photoluminescence (PL), micro Raman, and cathodoluminescent (CL) spectroscopy, to determine the differences between a natural diamond (0.30 cts) and a CVD diamond (0.43 cts). The identification of a CVD diamond was difficult when using standard gemological techniques, UV-VIS-NIR, or micro-Raman spectroscopy. However, a CVD diamond could be identified using a FT-IR by the Type II peaks. In addition, we identified a CVD diamond conclusively with the uneven UV fluorescent local bands, additional satellite PL peaks, longer phosphorescence life time, and uneven streaks in the CL images. Our results suggest that using FT-IR combined with UV fluorescent images, PL, and CL analysis might be an appropriate method for identifying CVD diamonds.

Doping-Concentration and Annealing Effects on Photoluminescence Profile of Eu(III)-doped CeO2 nanorods

  • Lee, Juheon;Park, Yohan;Joo, Sang Woo;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3319-3325
    • /
    • 2014
  • Eu(III)-doped $CeO_2$ nanorods were prepared by a co-precipitation method at room temperature, and their photoluminescence profiles were examined with different Eu(III)-doping concentrations and thermal annealing temperatures. Scanning electron microscopy, X-ray diffraction crystallography and UV-Vis absorption spectroscopy were employed to examine the morphology, crystal structure and photon absorption profiles of the nanorods, respectively. Additionally, their 2D and 3D-photoluminescence profile maps were obtained to fully understand the photoluminescence mechanism. We found that the magnetic dipole $^5D_0{\rightarrow}^7F_1$ and the electric dipole $^5D_0{\rightarrow}^7F_2$ transitions of Eu(III) were highly dependent on the doping concentration, annealing temperature and excitation wavelength, which was explained by the presence of different Eu(III)-doping sites (with and without an inversion center) in the $CeO_2$ host with a cubic crystal structure.

8배위 터븀 (III) 착화합물의 합성과 Photoluminescence 특성 (Photoluminescence properties of eight coordinated terbium(III) complexes)

  • 윤명희;김연희;최원종;장주환;최성호
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.451-459
    • /
    • 2011
  • 3종의 8배위 터븀 착화합물 [tris (2-pyrazinecarboxylato) (phenanthroline) terbium (III), tris (5-methyl-2-pyrazinecarboxylato) (phenanthroline) terbium(III) 및 tris (2-picolinato) (phenanthroline) terbium (III)]을 합성하고, 이 화합물을 FT-IR, UV 및 XPS 사용하여 특성평가 하였다. 또한, PL 스펙트라를 통하여 합성된 터븀 착화합물은 강한 녹색 형광을 방출하는 것을 확인하였으며, 시간 분해 분광분석기를 통하여 합성된 터븀 착화합물의 형광 반감기가 0.87 ms 및 1.0 ms임을 알았고, 열분석을 통하여 합성된 터븀 착화합물의 열안정성은 $333-379^{\circ}C$ 나타내는 것을 확인하였다. CV를 통하여 합성된 터븀 착화합물의 경우 HOMO-LUMO 에너지 차이가 4.26~4.41 eV를 나타냈는데, 이것은 UV-visible 스펙트라에서 얻은 값과 유사한 값임을 확인하였다. 따라서, 제조된 터븀 착화합물은 초록색을 발광하는 디바이스 재료로 사용할 수 있다.

Photoluminescence of Nanocrystalline CdS Thin Films Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권4호
    • /
    • pp.170-173
    • /
    • 2010
  • Nanocrystalline cadmium sulfide (CdS) thin films were prepared using chemical bath deposition in a solution bath containing $CdSO_4$, $SC(NH_2)_2$, and $NH_4OH$. The CdS thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). The as-deposited CdS thin film prepared at $80^{\circ}C$ for 60 min had a cubic phase with homogeneous and small grains. In the PL spectrum of the 2,900 A-thick CdS thin film, the broad red band around 1.7 eV and the broad high-energy band around 2.7 eV are attributed to the S vacancy and the band-to-band transition, respectively. As the deposition time increases to over 90 min, the PL intensity from the band-to-band transition significantly increases. The temperature dependence of the PL intensity for the CdS thin films was studied from 16 to 300 K. The $E_A$ and $E_B$ activation energies are obtained by fitting the temperature dependence of the PL intensity. The $E_A$ and $E_B$ are caused by the deep trap and shallow surface traps, respectively. From the FTIR analysis of the CdS thin films, a broad absorption band of the OH stretching vibration in the range $3,000-3,600\;cm^{-1}$ and the peak of the CN stretching vibration at $2,000\;cm^{-1}$ were found.

Strain-Modulated Photoluminescence in Single-Layer $MoS_2$

  • 고택영;박광희;류순민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.620-620
    • /
    • 2013
  • When $MoS_2$ is thinned to single layer (1L), photoluminescence (PL) quantum yield drastically increases due to emergence of direct band gap. A recent theory predicts that the electronic structure of 1L $MoS_2$ is very sensitive to its lattice constants. We investigated the response of 1L $MoS_2$ to biaxial tensile strain using spatially resolved PL and Raman spectroscopy. Changes in the lattice constants were monitored by the Raman frequency of the in-plane ($E^1{_2g}$) mode. Systematic correlations between PL and Ramanspectral features, revealed in the preliminary results, will be further tested with samples on other substrates and against thermal stress. The results will also be discussed in regard to the theory which predicts that 1L $MoS_2$ becomes an indirect semiconductor at small tensile strain and turns metallic when further extended.

  • PDF

Study of Anisotropic Photoluminescence and Energy Transfer in Oriented Dye-incorporating Zeolite-L Monolayer

  • Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2190-2194
    • /
    • 2010
  • Development of the methods to organize zeolite microcrystals into closely packed and uniformly aligned monolayers on various substrates have been pursued viewing microparticles as a novel class of building blocks. We now report that the vertically aligned zeolite monolayer can be applied as novel supramolecularly organized systems for anisotropic photoluminescence in high dichroic ratio, to study energy transfer dynamics between the internal and external fluorophores, and to develop zeolite-based advanced materials. Study of polarized fluorescence spectroscopy and angle-dependent intensity change with dye molecules in different surroundings further provides insight into molecular interactions that can be used for the future design of optoelectronic device in nanometer size. In addition, this report shows that isolating of organic dye through surface treatment is crucial for preventing the egress of the incorporated dye molecules from the channels of zeolite to the solution and to enhance the anisotropic luminescence.

Poly(3-hexylthiophene)의 PL 발광 메카니즘에 관한 연구 (A Study on the Mechanism of Photoluminescence in Poly(3-hexylthiophene))

  • 김주승;서부완;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제14권2호
    • /
    • pp.133-138
    • /
    • 2001
  • We studied the optical properties of poly(3-hexylthiophene) for applying to the emitting material of organic electro luminescent device. The infrared spectrum and NMR of synthesized polymer gave good evidence for the conjugation of 3-hexylthiophene monomer unit. We confirmed that poly(3-hexylthiophene) contains the HT(head-to-tail)-HT(head-to-Tail) linkage larger than 65% based on NMR analysis. FTIR and raman spectroscopy show that poly(3-hexylthiophene) has two main vibration levels which have an energy about 0.18eV and 0.36eV. Electronic absorption spectra shifted to the shorter wavelength with increasing temperature, which is related to a conformational transition of the polymer. Photoluminescence spectrum generated at low temperature(10K) is separated at 669nm, 733nm and 812nm that it's because of phonon energy generated from the lattice vibration.

  • PDF