Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.8.2190

Study of Anisotropic Photoluminescence and Energy Transfer in Oriented Dye-incorporating Zeolite-L Monolayer  

Lee, Jin-Seok (Department of Chemistry, Sookmyung Women's University)
Publication Information
Abstract
Development of the methods to organize zeolite microcrystals into closely packed and uniformly aligned monolayers on various substrates have been pursued viewing microparticles as a novel class of building blocks. We now report that the vertically aligned zeolite monolayer can be applied as novel supramolecularly organized systems for anisotropic photoluminescence in high dichroic ratio, to study energy transfer dynamics between the internal and external fluorophores, and to develop zeolite-based advanced materials. Study of polarized fluorescence spectroscopy and angle-dependent intensity change with dye molecules in different surroundings further provides insight into molecular interactions that can be used for the future design of optoelectronic device in nanometer size. In addition, this report shows that isolating of organic dye through surface treatment is crucial for preventing the egress of the incorporated dye molecules from the channels of zeolite to the solution and to enhance the anisotropic luminescence.
Keywords
Anisotropy; Photoluminescence; Energy transfer; Zeolite-L; Monolayer;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Lee, J. S.; Kim, J. H.; Lee, Y. J.; Jeong, N. C.; Yoon, K. B. Angew. Chem. Int. Ed. 2007, 46, 3087.   DOI   ScienceOn
2 Lee, Y.-J.; Lee, J. S.; Yoon, K. B. Micro. Meso. Mater. 2005, 80, 237.   DOI
3 Jeong, N. C.; Kim, H. S.; Yoon, K. B. Langmuir 2005, 21, 6038.   DOI
4 Nguyen, T.-Q.; Wu, J.; Doan, V.; Schwartz, B. J.; Tolbert, S. H. Science 2001, 288, 652.   DOI
5 Wu, J.; Gross, A. F.; Tolbert, S. H. J. Phys. Chem. B 1999, 103, 2374.   DOI
6 Lee, J. S.; Ha, K.; Lee, Y.-J.; Yoon, K. B. Adv. Mater. 2005, 17, 837.   DOI
7 Schwartz, B. J. Annu. Rev. Phys. Chem. 2003, 54, 141.   DOI
8 Lee, J. S.; Lim, H.; Ha, K.; Cheong, H.; Yoon, K. B. Angew. Chem. Int. Ed. 2006, 45, 5288.   DOI
9 Lim, H.; Cheong, H.; Lee, J. S.; Yoon, K. B. J. Kor. Phys. Soc. 2007, 51, 1583.   DOI
10 Lim, H.; Cheong, H.; Lee, J. S.; Yoon, K. B. J. Kor. Phys. Soc. 2008, 53, 2328.   DOI
11 Kulak, A.; Lee, Y.-J.; Park, Y. S.; Yoon, K. B. Angew. Chem., Int. Ed. 2000, 39, 950.   DOI
12 Komori, Y.; Hayashi, S. Chem. Mater. 2003, 15, 4598.   DOI
13 Yoon, K. B. Bull. Korean Chem. Soc. 2006, 27, 17.   DOI   ScienceOn
14 Calzaferri, G.; Huber, S.; Maas, H.; Minkowski, C. Angew. Chem. Int. Ed. 2003, 42, 3732.   DOI
15 Hagler, T. W.; Pakbaz, K.; Heeger, A. J. Phys. Rev. B 1994, 49, 10968.   DOI
16 Brinkmann, M.; Wittmann, J.-C. Adv. Mater. 2006, 18, 860.   DOI
17 Hung , A. M.; Stupp, S. I. Langmuir 2009, 25, 7084.   DOI
18 Sluch, M. I.; Pearson, C.; Petty, M. C.; Halim, M.; Samuel, I. D. W. Synth. Met. 1998, 94, 285.   DOI
19 Chen, X.; Lenhert, S.; Hirtz, M.; Lu, N.; Fuchs, H.; Chi, L. Acc. Chem. Res. 2007, 40, 393.   DOI
20 Rudick, J. G.; Percec, V. Acc. Chem. Res. 2008, 41, 1641.   DOI
21 Yanagi, H.; Okamoto, S. Appl. Phys. Lett. 1997, 71, 2563.   DOI