• Title/Summary/Keyword: Photoluminescence properties

Search Result 897, Processing Time 0.026 seconds

Synthesis and Photoluminescence Properties of Blue Phosphor Y1-xBO3:Cex3+ (청색 형광체 Y1-xBO3:Cex3+의 합성과 발광 특성)

  • Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • $Y_{1-x}BO_3:Ce_x^{3+}$ ceramic phosphors were synthesized with changing the concentration of $Ce^{3+}$ ion by using a solid-state reaction method. The crystal structure, surface morphology, and optical properties of the blue phosphors were investigated by using X-ray diffractometer (XRD), scanning electron microscopy, and photoluminescence and photoluminescence excitation spectrophotometry, respectively. The XRD results showed that the main peak of the phosphor powders occurs at (401)와 ($31\bar{2}$) planes. As for the optical properties, the excitation spectrum occurred at 243 nm and the value of blue emission intensity peaking at 469 nm reached the maximum when the concentration of $Ce^{3+}$ ion was 0.10 mol.

Improvement of UV Photoluminescence of Hydrogen Plasma Treated ZnO Nanowires (수소 플라즈마 처리된 산화 아연 나노선의 자외선 발광 특성향상)

  • Kang, Wooseung;Park, Sunghoon
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.291-297
    • /
    • 2013
  • ZnO nanowires were synthesized by vapor-liquid-solid (VLS) process using ZnO and graphite powders on the sapphire substrate coated with an Au film as a catalyst. ZnO nanowires had two prominent emission bands; i) near-band edge (NBE) emission band at 380 nm, and ii) a relatively stronger deep level (DL) emission band ($I_{NBE}/I_{DL}$ <1). In order for the ZnO nanowires to be utilized as an effective material for UV emitting devices, the photoluminescence intensity of NBE needs to be improved with the decreased intensity of DL. In the current study, hydrogen plasma treatment was performed to improve the photoluminescence characteristics of ZnO nanowires. With the hydrogen plasma treatment time of more than 120 sec, the extent of performance improvement was gradually decreased. However, the intensity ratio of NBE to DL ($I_{NBE}/I_{DL}$) was significantly improved to about 4 with a relatively short plasma treatment time of 90 sec, suggesting hydrogen plasma treatment is a promising approach to improve the photoluminescence properties of ZnO nanowires.

Properties for the $CdIn_2Te_4$ Single Crystal

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.179-182
    • /
    • 2004
  • The $p-CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. From the Photoluminescence spectra of the as-grown $CdIn_2Te_4$ crystal and the various heat-treated crystals, the $(D^{o},X)$ emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_2Te_4:Cd$, while the $(A^{o},X)$ emission completely disappeared in the $CdIn_2Te_4:Cd$. However, the $(A^{o},X)$ emission in the photoluminescence spectrum of the $CdIn_2Te_4:Te$ was the dominant intensity like an as-grown $p-CdIn_2Te_4$ crystal. These results indicated that the $(D^{o},X)$ is associated with $V_{Te}$ acted as donor and that the $(A^{o},X)$ emission is related to $V_{Cd}$ acted as acceptor, respectively. The $p-CdIn_2Te_4$ crystal was found to be obviously converted into the n-type after annealing in the Cd atmosphere. The origin of $(D^{o},\;A^{o})$ emission and its TO Phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and accepters such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_2Te_4$ was confirmed not to form the native defects because it existed in the stable form of bonds.

  • PDF

Photoluminescience Properties and Growth of $CdIn_2Te_4$ Single crystal by Bridgman method (Bridgman법에 의해 $CdIn_2Te_4$ 단결정 성장과 광발광 특성)

  • Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.278-281
    • /
    • 2003
  • The p-CIn2Te4 single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. From the photoluminescence spectra of the as-grown CdIn2Te4 crystal and the various heat-treated crystals, the (Do, X) emission was found to be the dominant intensity in the photoluminescence spectrum of the CdIn2Te4:Cd, while the (Ao, X) emission completely disappeared in the CdIn2Te4:Cd. However, the (Ao, X) emission in the photoluminescence spectrum of the CdIn2Te4:Te was the dominant intensity like an as-grown CdIn2Te4 crystal. These results indicated that the (Do, X) is associated with VTe acted as donor and that the (Ao, X) emission is related to VCd acted as acceptor, respectively. The p-CdIn2Te4 crystal was found to be obviously converted into the n-type after annealing in the Cd atmosphere. The origin of (Do, Ao) emission and its TO phonon replicas is related to the interaction between donors such as VTe or Cdint, and accepters such as VCd or Teint. Also, the In in the CdIn2Te4 was confirmed not to form the native defects because it existed in the stable form of bonds.

  • PDF

Photoluminescence from silicon nanocrystals in silicon ion implanted SiO2 layers (실리콘 이온주입 SiO2층의 나노결정으로 부터의 광루미네센스)

  • Kim, Kwang-Hee;Oh, Hang-Seok;Jang, Tae-Su;Kwon, Young-Kyu;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • Photoluminescence(PL) properties of $Si^+$-implanted $SiO_2$ film, which was thermally grown on c-Si substrate, is reported. We have compared room temperature photoluminescence (PL) spectra of the samples which was made in several kinds of implantation, subsequent annealing and $SiO_2$ film thickness. XRD data was correlated with the PL spectra. Silicon nanocrystals in $SiO_2$ film is considered as the origin of the photoluminescence. PL spectra was investigated after wet etching of the $SiO_2$ film by using BOE (Buffered Oxide Etchant) at every one minute. PL peak wavelength was varied as the etching is proceeded. These results indicate that the quantity and the distribution of dominant size of Si nanocrystals in $SiO_2$ film seem to have a direct effect on PL spectrum.

Photoluminescience properties for CdIn2Te4 single crystal grown by Bridgman method

  • Hong, Myung-Seok;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.379-385
    • /
    • 2006
  • Single crystal of p-$CdIn_{2}Te_{4}$ was grown in a three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by x-ray diffraction and photoluminescence measurements. From the photoluminescence spectra of the as-grown $CdIn_{2}Te_{4}$ crystal and the various heat-treated crystals, the ($D^{o}$, X) emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Cd, while the ($A^{o}$, X) emission completely disappeared in the $CdIn_{2}Te_{4}$:Cd. However, the ($A^{o}$, X) emission in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Te was the dominant intensity like in the as-grown $CdIn_{2}Te_{4}$ crystal. These results indicated that the ($D^{o}$, X) is associated with $V_{Te}$ which acted as donor and that the ($A^{o}$, X) emission is related to $V_{Cd}$ which acted as acceptor, respectively. The p-$CdIn_{2}Te_{4}$ crystal was obviously found to be converted into n-type after annealing in Cd atmosphere. The origin of ($D^{o},{\;}A^{o}$) emission and its to phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and acceptors such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_{2}Te_{4}$ was confirmed not to form the native defects because it existed in a stable bonding form.

The Effect of Crystallinity on the Photoluminescence of TiO2 Nanoparticles (결정성에 따른 TiO2 나노입자의 포토루미네선스 영향)

  • Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • The Titanium oxide ($TiO_2$) is an attractive ceramic material which shows non-toxic, high refractive index, catalytic activity and biocompatibility, and can be fabricated at a low cost due to its high chemical stability and large anisotropy. $TiO_2$ nanoparticles have been prepared by sol-gel method. The pH of solution can affect the $TiO_2$ crystallinity during the formation of nanoparticles. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, photoluminescence spectroscopy in order to investigate their structural and photoluminescence properties. Through these analysis, the size of $TiO_2$ nanoparticles were found to be smaller than 5 nm. As the crystallinity of the nanoparticles increased, the emission of PL in the 550 nm region increased. Therefore, luminescence characteristics can be improved by controlling the crystallinity of the $TiO_2$ nanoparticles.

Enhancement of photoluminescence and electrical properties of Ga doped ZnO thin film grown on $\alpha$-$Al_2O_3$(0001) single crystal substrate by RE magnetron sputtering through rapid thermal annealing (RF 마그네트론 스퍼터링 법으로 사파이어 기판 위에 성장시킨 ZnO: Ga 박막의 RTA 처리에 따른 photoluminescence 특성변화)

  • Cho, Jung;Na, Jong-Bum;Oh, Min-Seok;Yoon, Ki-Hyun;Jung, Hyung-Jin;Choi, Won-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.335-340
    • /
    • 2001
  • $Ga_2O_3$(1 wt%)-doped ZnO(GZO) thin films were grown on ${\alpha}-Al_2O_3$ (0001) by rf magnetron sputtering at $510^{\circ}C$, whose crystal structure was polycrystalline. As-grown GZO thin film shows poor electrical properties and photoluminescence (PL) spectra. To improve these properties, GZO thin films were annealed at 800-$900^{\circ}C$ in $N_2$atmosphere for 3 min. After the rapid thermal annealing(RTA), deep defect-level emission disappears and near-band emission is greatly enhanced. Annealed GZO thin films show very low resisitivity of $2.6\times10^{-4}\Omega$/cm with $3.9\times10^{20}/\textrm{cm}^3$ carrier concentration and exceptionally high mobility of 60 $\textrm{cm}^2$/V.s. These improved physical properties are explained in terms of translation of doped-Ga atoms from interstitial to substitutional site.

  • PDF

A Study on Structural and Optical Properties of Pb1-xCdxI2 Single Crystals (Pb1-xCdxI2 단결정의 구조적 광학적 특성 연구)

  • Song, Ho-Jun;Choi, Sung-Gill;Kim, Wha-Tek
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.875-879
    • /
    • 2002
  • $Pb_{1-x}$ $Cd_{x}$ $I_2$ (x=0.0, 0.2, 0.5, 0.7, 0.9, 1.0) single crystals were grown by using Bridgman method and their structural and optical properties were investigated from the measurement of X-ray diffraction, optical absorption and photoluminescence. As-grown single crystals have hexagonal closed packed layered structure. The values of lattice constant c decrease with increasing composition x. Direct and indirect transition optical energy band gaps are calculated from optical absorption spectra measured at room temperature. They increase exponentially from 2.3eV to 3.2 eV with increasing composition x. The energies of photoluminescence peak due to donor bound exciton measured at 6K increase with increasing composition . However, the peak energies of donor-acceptor pair (DAP) are independent of the optical energy band gaps of $Pb_{1-x}$/$Cd_{x}$ $I_2$ single crystals.