• Title/Summary/Keyword: Photoluminescence excitation

Search Result 244, Processing Time 0.021 seconds

Photoluminescence Characteristics of the Light-Emitting Chromophores Obtained from Organic-Inorganic Hybrid Silica Spheres

  • Park, Eun-Hye;Jeong, Chang-Gi;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.93-97
    • /
    • 2016
  • Light-emitting chromophores have been separated from silica spheres modified the surface with 3-(trimethoxysilyl)propylmethacrylate (TMSPM). The photoluminescence characteristics of the chromophores were investigated with various excitation wavelengths. The TMSPM was attached to the surface of silica spheres at $75^{\circ}C$. Large number of round shaped particles of the TMSPM was on the surface of silica spheres after 3 h reaction. The TMPSM was completely covered on the surface of the spheres after 6 h reaction. The surface modified silica spheres were soaked into acetone and stored for 20 days at ambient condition. The solution color slowly changed from light yellow to deep yellow with the increase of the storing time. The FTIR absorption peaks at 3348, 2869, 2927, 1715, 1453/1377, 1296, and $1120cm^{-1}$ represent C-OH, $R-CH_3$, $R_2-CH_2$, -C=O, C-H, C=C-H, and Si-O-Si absorption, respectively. The FTIR absorption peak at $1715cm^{-1}$ representing the ester -C=O stretching vibration for silica spheres stored for 20 days was increased compared with the spheres without aging. The UV-visible absorption peaks were at 4.51 eV (275 nm) and 3.91 eV (317 nm). There were two luminescence peaks at 2.51 eV (495 nm) and 2.25 eV (550 nm). The emission at 2.51 eV was dominant peak when the excitation energy was higher than 2.58 eV, and emission at 2.25 eV became dominant peak when the excitation energy was lower than 2.58 eV.

Luminescence properties of asymmetric double quantum well composed of $Al_xGa_{l-x}As/AlAs/GaAs$ system ($Al_xGa_{l-x}As/AlAs/GaAs$계로 이루어진 비대칭 이중 양자우물 구조에서의 광 luminescsnce 특성 연구)

  • 정태형;강태종;이종태;한선규;유병수;이해권;이정희;이민영;김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.183-190
    • /
    • 1992
  • Luminescence properties of asymmetric double quantum well structure composed of $Al_x/Ga_{1-x}$ /As AIAs/GaAs have been studied by steady state and time-resolved photoluminescence and phtoluminescence excitation spectroscopy at low temperature. Two quantum well samples with different barrier thickness (15$\AA$ and 150$\AA$) were prepared to investigate the dependence of tunneling characteristics on barrier thickness. The abscence of excitonic recombination peak from $Al_x/Ga_{1-x}$As well for the 15$\AA$ barrier sample indicates a very fast electron tunneling to GaAs well. Meanwhile, T-X transition between well and barrier is supposed to be a major route for the fast decay of luminescence from $Al_x/Ga_{1-x}$As well in the 150$\AA$ barrier sample. Time-resolved photduminescence from GaAs well of 15$\AA$ sample shows the exsitence of the rise with 100 ps which is attributed to the hole tunneling.

  • PDF

Doping-Concentration and Annealing Effects on Photoluminescence Profile of Eu(III)-doped CeO2 nanorods

  • Lee, Juheon;Park, Yohan;Joo, Sang Woo;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3319-3325
    • /
    • 2014
  • Eu(III)-doped $CeO_2$ nanorods were prepared by a co-precipitation method at room temperature, and their photoluminescence profiles were examined with different Eu(III)-doping concentrations and thermal annealing temperatures. Scanning electron microscopy, X-ray diffraction crystallography and UV-Vis absorption spectroscopy were employed to examine the morphology, crystal structure and photon absorption profiles of the nanorods, respectively. Additionally, their 2D and 3D-photoluminescence profile maps were obtained to fully understand the photoluminescence mechanism. We found that the magnetic dipole $^5D_0{\rightarrow}^7F_1$ and the electric dipole $^5D_0{\rightarrow}^7F_2$ transitions of Eu(III) were highly dependent on the doping concentration, annealing temperature and excitation wavelength, which was explained by the presence of different Eu(III)-doping sites (with and without an inversion center) in the $CeO_2$ host with a cubic crystal structure.

Photoluminescence in Carbon-doped GaAs Epilayers Grown on GaAs (311)A (GaAs (311)A 기판 위에 성장된 탄소 도핑된 GaAs 에피층의 광여기 발광)

  • 조신호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.208-213
    • /
    • 2002
  • We present the temperature and excitation power density dependence of the photoluminescence from carbon-doped GaAs epilayers grown on GaAs (311)A substrate by atmospheric pressure metalorganic chemical vapor deposition. The measured temperature dependence of the PL peak energy is well expressed by an empirical formula proposed by Varshni. The thermal quenching mechanism of the intensity of 16 K luminescence peak at 1.480 eV is described with the dominant activation energy of 27$\pm$2 meV. The activation energy shows an evidence that the emission band involves the carbon acceptor in the recombination process.

Preparation and Photoluminescence Properties of $Ba_{1-x}M_xGa_2S_4:Eu^{2+}$ (M = Ca, Sr) Phosphor

  • Yoo, Hyoung-Sun;Kim, Sung-Wook;Han, Ji-Yeon;Park, Bong-Je;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.561-564
    • /
    • 2008
  • $Ba_{1-x}M_xGa_2S_4:Eu^{2+}$ (M = Ca, Sr) phosphor was prepared for white light emitting diodes application. Photoluminescence (PL) emission and excitation bands were red-shifted with increase of Ca and Sr content due to the crystal field effect. Moreover, the PL intensity under 450 nm was increased by substitution of Ca and Sr.

  • PDF

Photoluminescence Characteritics of Electrosprayed Eu(III) Doped Y2O3 Nanorods on a Si Substrate

  • Sin, Won-Gyu;Park, Mi-So;Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.435-435
    • /
    • 2014
  • Eu(III)-doped Y2O3 nanorods were deposited onto a Si substrate using electrostatic spray system. The photoluminescence imaging profiles were compared between the electrospray film and powder form. Using electrostatic spraying technique is very advantageous to generate a uniform monolayer film without much clustering of nanorods. Strong emission peaks were observed between 580 and 730 nm in response to an indirect excitation transition. Our results indicate that the electrospray technique could be very useful for generating thin films for displays and sensors.

  • PDF

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices

  • Ha, S.-K.;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.245-249
    • /
    • 2015
  • Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.

Photoluminescence Properties of CaAl2O4:RE3+(RE = Tb, Dy) Phosphors (CaAl2O4:RE3+(RE = Tb, Dy) 형광체의 발광 특성)

  • Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.143-148
    • /
    • 2016
  • $CaAl_2O_4:RE^{3+}$(RE = Tb or Dy) phosphor powders were synthesized with different contents of activator ions $Tb^{3+}$ and $Dy^{3+}$ by using the solid-state reaction method. The effects of the content of activator ions on the crystal structure, morphology, and emission and excitation properties of the resulting phosphor particles were investigated. XRD patterns showed that all the synthesized phosphors had a monoclinic system with a main (220) diffraction peak, irrespective of the content and type of $Tb^{3+}$ and $Dy^{3+}$ ions. For the $Tb^{3+}$-doped $CaAl_2O_4$ phosphor powders, the excitation spectra consisted of one broad band centered at 271 nm in the range of 220-320 nm and several weak peaks; the main emission band showed a strong green band at 552 nm that originated from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. For the $Dy^{3+}$-doped $CaAl_2O_4$ phosphor, the emission spectra under ultraviolet excitation at 298 nm exhibited one strong yellow band centered at 581 nm and two weak bands at 488 and 672 nm. Concentration-dependent quenching was observed at 0.05 mol of $Tb^{3+}$ and $Dy^{3+}$ contents in the $CaAl_2O_4$ host lattice.

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

Photoluminescence Properties of Green Phosphor Y1-xBO3:Tbx3+ Synthesized by Solid-state Reaction Method (고상 반응법으로 제조한 녹색 형광체 Y1-xBO3:Tbx3+의 형광 특성)

  • Cho, Shin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.659-663
    • /
    • 2011
  • [ $Y_{1-x}BO_3:Tb_x^{3+}$ ]ceramic phosphors were synthesized with changing the concentration of $Tb^{3+}$ at a sintering temperature of $1,100^{\circ}C$ and a reduction temperature of $950^{\circ}C$ by using a solid-state reaction method. The crystal structure, surface morphology, and photoluminescence properties of the phosphors were investigated as a function of $Tb^{3+}$ ion concentration by using XRD (x-ray diffractometer), scanning electron microscopy, and photoluminescence spectrophotometry, respectively. The XRD results showed that the main peak of the phosphor powders occurs at (101) plane. As for the photoluminescence properties, the excitation spectra showed the broad band centered at 306 nm and the emission intensity of the spectra peaked at 543 nm indicated a significant decrease as the concentration of $Tb^{3+}$ ion is increased.