Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.3.143

Photoluminescence Properties of CaAl2O4:RE3+(RE = Tb, Dy) Phosphors  

Cho, Shinho (Department of Materials Science and Engineering and Center for Green Fusion Technology, Silla University)
Publication Information
Korean Journal of Materials Research / v.26, no.3, 2016 , pp. 143-148 More about this Journal
Abstract
$CaAl_2O_4:RE^{3+}$(RE = Tb or Dy) phosphor powders were synthesized with different contents of activator ions $Tb^{3+}$ and $Dy^{3+}$ by using the solid-state reaction method. The effects of the content of activator ions on the crystal structure, morphology, and emission and excitation properties of the resulting phosphor particles were investigated. XRD patterns showed that all the synthesized phosphors had a monoclinic system with a main (220) diffraction peak, irrespective of the content and type of $Tb^{3+}$ and $Dy^{3+}$ ions. For the $Tb^{3+}$-doped $CaAl_2O_4$ phosphor powders, the excitation spectra consisted of one broad band centered at 271 nm in the range of 220-320 nm and several weak peaks; the main emission band showed a strong green band at 552 nm that originated from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. For the $Dy^{3+}$-doped $CaAl_2O_4$ phosphor, the emission spectra under ultraviolet excitation at 298 nm exhibited one strong yellow band centered at 581 nm and two weak bands at 488 and 672 nm. Concentration-dependent quenching was observed at 0.05 mol of $Tb^{3+}$ and $Dy^{3+}$ contents in the $CaAl_2O_4$ host lattice.
Keywords
phosphor; photoluminescence; excitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho and G. C. Kim, Appl. Phys. Lett., 84, 2931 (2004).   DOI
2 H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone and Y. Park, Appl. Phys. Lett., 86, 243505 (2005).   DOI
3 G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan and G. Hong, J. Rare Earth., 28, 22 (2010).
4 L. Wang and Y. Wang, Physica B, 393, 147 (2007).   DOI
5 S. W. Choi and S. H. Hong, Mater. Sci. Eng. B, 171, 69 (2010).   DOI
6 Y. Zhang, J. Chen, C. Xu, Y. Li and H. J. Seo, Physica B, 472, 6 (2015).   DOI
7 V. Singh, R. P. S. Chakradhar, I. Ledoux-Rak, L. Badie, F. Pelle and S. Ivanova, J. Lumin., 129, 1375 (2009).   DOI
8 T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari and J. Niittykoski, J. Alloys Compd., 341, 76 (2002).   DOI
9 C. Zhao and D. Chen, Mater. Lett., 61, 3673 (2007).   DOI
10 H. Ryu and K. S. Bartwal, Physica B, 403, 1843 (2008).   DOI
11 I. Omkaram and S. Buddhudu, Opt. Mater., 32, 8 (2009).   DOI
12 A. Rosendo, M. Flores, G. Cordoba, R. Rodriguez and R. Arroyo, Mater. Lett., 57, 2885 (2003).   DOI
13 G. Wakefield, H. A. Keron, P. J. Dobson and J. L. Hutchison, J. Phys. Chem. Solids, 60, 503 (1999).   DOI
14 X. Li, L. Guan, M. Sun, H. Liu, Z. Yang, Q. Guo and G. Fu, J. Lumin., 131, 1022 (2011).   DOI
15 S. Cho, J. Korean Vac. Soc., 22, 79 (2013).   DOI
16 C. H. Kam and S. Buddhudu, Mater. Lett., 54, 337 (2002).   DOI
17 X. Ju, X. Li, W. Li, W. Yang and C. Tao, Mater. Lett., 65, 2642 (2011).   DOI
18 P. Du, L. Song, J. Xiong, H. Cao, Z. Xi, S. Guo, N. Wang and J. Chen, J. Alloys. Compd., 540, 179 (2012).   DOI
19 A. K. Bedyal, V. Kumar, R. Prakash, O. M. Ntwaeaborwa and H. C. Swart, Appl. Surf. Sci., 329, 40 (2015).   DOI
20 N. Niu, P. Yang, W. Wang, F. He, S. Gai, D. Wang and J. Lin, Mater. Res. Bull., 46, 333 (2011).   DOI
21 Z. H. Li, J. H. Zeng, G. C. Zhang and Y. D. Li, J. Solid State Chem., 178, 3624 (2005).   DOI
22 S. Liu, Y. Liang, M. Tong, D. Yu, Y. Zhu, X. Wu and C. Yan, Mat. Sci. Semicon. Process., 38, 266 (2015).   DOI