• Title/Summary/Keyword: Photoluminescence characteristics

Search Result 359, Processing Time 0.028 seconds

Mechanistic investigations on emission characteristics from g-C3N4, gC3N4@Pt and g-C3N4@Ag nanostructures using X-ray absorption spectroscopy

  • Sharma, Aditya;Varshney, Mayora;Chae, Keun Hwa;Won, Sung Ok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1458-1464
    • /
    • 2018
  • An improved method for the preparation of g-$C_3N_4$ is described. Currently, heating (> $400^{\circ}C$) of urea is the common method used for preparing the g-$C_3N_4$. We have found that sonication of melamine in $HNO_3$ solution, followed by washing with anhydrous ethanol, not only reduce the crystallite size of g-$C_3N_4$ but also facilitate intriguing electronic structure and photoluminescence (PL) properties. Moreover, loading of metal (Pt and Ag) nanoparticles, by applying the borohydride reduction method, has resulted in multicolor-emission from g-$C_3N_4$. With the help of PL spectra and local electronic structure study, at C K-edge, N K-edge, Pt L-edge and Ag K-edge by X-ray absorption spectroscopy (XAS), a precise mechanism of tunable luminescence is established. The PL mechanism ascribes the amendments in the transitions, via defect and/or metal states assimilation, between the ${\pi}^*$ states of tris-triazine ring of g-$C_3N_4$ and lone pair states of nitride. It is evidenced that interaction between the C/N 2p and metal 4d/5d orbitals of Ag/Pt has manifested a net detraction in the ${\delta}^*{\rightarrow}LP$ transitions and enhancement in the ${\pi}^*{\rightarrow}LP$ and ${\pi}^*{\rightarrow}{\pi}$ transitions, leading to broad PL spectra from g-$C_3N_4$ organic semiconductor compound.

Luminescent Characteristics and Synthesis of Y3Al5O12:Eu3+ Red Phosphors (Y3Al5O12:Eu3+ 적색 형광체의 제조와 발광특성)

  • Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.425-428
    • /
    • 2022
  • In this study, Y3Al5O12:Eu3+ red phosphors were synthesized at different temperatures using a solid state reaction method. The crystal structures, surface and optical properties of the Y3Al5O12:Eu3+ red phosphors were investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and photoluminescence (PL) analyses. From XRD results, the crystal structure of the Y3Al5O12:Eu3+ red phosphors was determined to be cubic. The maximum emission spectra were observed for the Y3Al5O12:Eu3+ red phosphor prepared by annealing for 4h at 1,700 ℃. The 565~590 nm photoluminescent spectra of the Y3Al5O12:Eu3+ red phosphors is associated with the 5D07F2 magnetic dipole transition of the Eu3+ ions. The intensity of the photoluminescent spectra in the red phosphors is more dominant for the magnetic dipole transition than the electric dipole transition with increasing annealing temperature. The International Commission on Illumination (CIE) coordinates of Y3Al5O12:Eu3+ red phosphors prepared by 1,700 ℃ annealing temperature are X = 0.5994, Y = 0.3647.

A Study on the Luminescent Characteristics of YPO4:Pr3+ Phosphor by the Content Ratio of Pr6O11 and Calcination Temperature (Pr6O11의 함량 및 열처리 조건에 따른 YPO4:Pr3+ 형광체의 발광 특성 연구)

  • Min Jun Kim;Seong Eui Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.68-73
    • /
    • 2024
  • In this study, the praseodymium-doped yttrium phosphate (YPO4:Pr3+) powder, which is well known for its high luminescent efficiency, and long life in the UV range, was synthesized with various content ratios of Pr6O11 and calcination temperature. Crystal structure and luminescent properties of various phosphor powders based on different concentrations and calcination conditions were characterized by XRD (X-Ray Diffraction) and PL (photoluminescence) spectrometers. From the XRD analysis, the structure of YPO4:Pr3+ which is calcinated at 1,200℃ was stable tetragonal phase and crystal size was calculated about 25 nm by Scherrer equation. PL emission of YPO4:Pr3+ with a different content ratio of Pr6O11 by excitation λexc=250 nm shows that 0.75 mol% phosphor powder has maximum PL intensity and PL decreases with the increase of the ratio of Pr6O11 up to 1.25 mol% which is caused by changes of crystallinity of phosphor powders. With increasing dopant ratio, photo-luminescence Emission decreases due to Concentration quenching, which is commonly observed in phosphors. Currently, 0.75 mol% is considered the optimal doping concentration. A hybrid ultraviolet-emitting device incorporating YPO4:Pr3+ fluorescent material with plasma discharge was fabricated to enhance UV germicidal effects while minimizing ozone generation. UV emission from the plasma discharge device was shown at about 200 nm and 350 nm which caused additional emission of the regions of 250 nm, 315 nm, and 370 nm from the YPO4:Pr3+ phosphor.

Characteristics and thermal stability of SrAl2O4: Eu2+, Dy3+ long afterglow phosphors synthesized solid state reaction and polymerized complex method (고상반응법과 착체중합법으로 합성된 SrAl2O4: Eu2+, Dy3+ 축광성 형광체의 특성 및 열적 안정성 평가)

  • Kim, Tae-Ho;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.193-200
    • /
    • 2016
  • Characteristics of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphorescent phosphors synthesized by solid state reaction and polymerized complex method were comparatively analyzed. In order to evaluate thermal stability of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphorescent phosphors at high temperature, phosphorescent properties of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ were investigated with thermal treatment at $1250^{\circ}C$ under reducing atmosphere, which was the general heat treatment conditions for ceramic manufacturing process. The phosphorescent properties of thermally treated $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphors synthesized by solid state reaction and polymerized complex method were investigated. The crystal structure and crystallite size were observed through XRD analysis. Microstructure and particle size of thermally treated $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphors were analyzed by SEM and PSA. Photoluminescence and afterglow characteristics of thermally treated $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphorescent phosphors were measured by spectrofluorometer.

Studies on the Optical and the Electrical Characterization of Organic Electroluminescence Devices of Europium Complex Fabricated with PVD(Physical Vopor Deposition) Technique (진공 증착법에 의하여 제작한 Europium complex 유기 박막 전기발광소자의 광학적.전기적 특성에 관한 연구.)

  • Lee, Myeong-Ho;Lee, Han-Seong;Kim, Yeong-Gwan;Kim, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.285-295
    • /
    • 1999
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of their capability of multi-color emission, and low operation voltage. An approach to realize such device characteristics is to use active layers of lanthanide complexes with their inherent extremely sharp emission bands in stead of commonly known organic dyes. In general, organic molecular compounds show emission due to their $\pi$-$\pi*$ transitions resulting in luminescence bandwidths of about 80 to 100nm. Spin statistic estimations lead to an internal quantum efficiency of dye-based EL devices limited to 25%. On the contrary, the fluorescence of lanthanide complexes is based on an intramolecular energy transfer from the triplet of the organic ligand to the 4f energy states of the ion. Therefore, theoretical internal quantum efficiency is principally not limited. In this study, Powders of TPD, $Eu(TTA)_3(phen) and AlQ_3$ in a boat were subsequently heated to their sublimation temperatures to obtain the growth rates of 0.2~0.3nm/s. Organic electrolumnescent devices(OELD) with a structure of $glass substrate/ITO/Eu(TTA)_3(phen)/AI, glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AI and glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AIQ_3AI$ structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, $Eu(TTA)_3(phen)$ as an emitting material, and Tris(8-hydroxyquinoline)Aluminum$(AlQ_3)$ as an electron transporting layer. Electroluminescent(EL) and current density-voltage(J-V) characteristics of these OELDs with various thickness of $Eu(TTA)_3(phen)$ layer were investigated. The triple-layer structure devices show the red EL spectrum at the wavelength of 613nm, which is almost the same as the photoluminescent(PL) spectrum of $Eu(TTA)_3(phen)$.It was found from the J-V characteristics of these devices that the current density is not dependent on the applied field, but on the electric field.

  • PDF

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

A Study on the Effect of O$_2$ annealing on Structural, Optical, and Electrical Characteristics of Undoped ZnO Thin Films Deposited by Magnetron Sputtering (산소 어닐링이 마그네 트론 스퍼터링으로 증착된 undoped ZnO박막의 구조적, 광학적, 전기적 특성에 미치는 영향에 대한 연구)

  • Yun, Eui-Jung;Park, Hyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper, the effects of annealing conditions on the structural ((002) intensity, FWHM, d-spacing, grain size, (002) peak position), optical (UV peak, UV peak position) and electrical properties (carrier concentrations, resistivity, mobility) of ZnO films were investigated. ZnO films were deposited onto SiO$_2$/si substrates by RF magnetron sputtering from a ZnO target. The substrate was not heated during deposition. ZnO films were annealed in temperature ranges of $500\sim650^{\circ}C$ in the O$_2$ flow for 5$\sim$20 min. The film average thicknesses were in the range of 291 nm. The surface morphologies and structures of the samples were characterize by SEM and XRD, respectively. The optical properties were evaluated by photoluminescence (PL) measurement at room temperature (RT) using a He-Cd 325 nm laser. As the annealing temperature and time vary, the following relations were also observed: (1) proportional relationships among UV intensity (002) intensity, and grain size exist, (2) UV intensity is inversely proportional to FWHM, (3) there is no special relationship between UV intensity and electron carrier concentrations, (4) d-spacing is inversely proportional to (002) peak position, (5) UV peak position in the range of 3.20$\sim$3.24 eV means that ZnO films have a n-type conductivity which was consistent with that obtained from the electrical property, (6) the optimal conditions for the best optical and structural characteristics were found to be oxygen fraction, (O$_2$/(O$_2$+Ar)) of 0.2, RF power of 240W, substrate temperature of RT, annealing condition of 600$^{\circ}C$ for 20 min, and sputtering pressure of 20 mTorr.

Variation of optical characteristics with the thickness of bulk GaN grown by HVPE (HVPE로 성장시킨 bulk GaN의 두께에 따른 광학적 특성 변화)

  • Lee, Hee Ae;Park, Jae Hwa;Lee, Jung Hun;Lee, Joo Hyung;Park, Cheol Woo;Kang, Hyo Sang;Kang, Suk Hyun;In, Jun Hyeong;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • In this work, we investigated the variation of optical characteristics with the thickness of bulk GaN grown by hydride vapor phase epitaxy(HVPE) to evaluate applicability as GaN substrates in fabrication of high-brightness optical devices and high-power devices. We fabricated 2-inch GaN substrates by using HVPE method of various thickness (0.4, 0.9, 1.5 mm) and characterized the optical property with the variation of defect density and the residual stress using chemical wet etching, Raman spectroscopy and photoluminescence. As a result, we confirmed the correlation of optical properties with GaN crystal thickness and applicability of high performance optical devices via fabrication of homoepitaxial substrate.

Design and Growth of InAs Multi-Quantum Dots and InGaAs Multi-Quantum Wells for Tandem Solar Cell (텐덤형 태양전지를 위한 InAs 다중 양자점과 InGaAs 다중 양자우물에 관한 연구)

  • Cho, Joong-Seok;Kim, Sang-Hyo;HwangBoe, Sue-Jeong;Janng, Jae-Ho;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • The InAs multi-quantum dots (MQDs) solar cell and InGaAs multi-quantum wells (MQWs) solar cell to cover 1.1 eV and 1.3 eV were designed by 1D poisson, respectively. The MQDs and MQWs of 5, 10, 15 layers were grown by molecular beam epitaxy. The photo luminescence results showed that the 5 period stacked MQDs have the highest intensity at around 1.1 eV with 57.6 meV full width at half maximum (FWHM). Also we can observe 10 period stacked MQWs peak position which has highest intensity at 1.31 eV with 12.37 meV FWHM. The density and size of QDs were observed by reflection high energy electron diffraction pattern and atomic force microscope. Futhermore, AlGaAs/GaAs sandwiched tunnel junctions were modified according to the width of GaAs layer on p-type GaAs substrates. The structures with GaAs width of 30 nm and 50 nm have backward diode characteristics. In contrast, tunnel diode characteristics were observed in the 20 nm of that of sample.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.