• Title/Summary/Keyword: Photoelectric device

Search Result 63, Processing Time 0.02 seconds

Emitter Electrode Design to Optimize the Optical and Electrical Characteristics of Planar Solar Cells (평판형 태양 전지의 광학 및 전기적 특성 최적화를 위한 에미터 전극 설계 연구)

  • Lee, Sangbok;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • In this study, we propose a design method to optimize the electro-optical efficiency of a planar solar cell structure by adjusting one-dimensionally periodic emitter electrodes. Since the aperture ratio of the active layer decreases as the period of the emitter electrode decreases, the amount of light absorption diminishes, affecting the performance of the device. Here we design the optimal structure of the periodic emitter electrode in a simple planar solar cell, by simulation. In terms of optics, we find the condition that shows optical performance similar to that of a reference without the emitter electrode. In addition, the optimized electrode structure is extracted considering both the optical and electrical efficiency. This work will help to increase the utilization of solar cells by suggesting a structure that can most efficiently transfer charge generated by photoelectric conversion to the electrodes.

Improvement of Rice Quality Using Grain Color Sorter During Early Transplanting Cultivation in the Southern Plain of Korea (색채선별기 이용한 남부평야지 조기재배 해담쌀의 품질향상)

  • Lee, Jong-Hee;Lee, Ji-Yoon;Lee, Somyeong;Shin, Dongjin;Cha, Jinkyeong;Cho, Jun-Hyeon;Kwon, Young-Ho;Jo, Su-min;Park, Dong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.79-83
    • /
    • 2020
  • A photoelectric grain color sorter is commonly used in postharvest technology to detect and separate grains considered to be of good quality from those of poor quality based on color. In this study, the milled rice of Haedamssal cultivated under early transplanting conditions was evaluated using the color sorting device. Rice was classified according to standard grades of 64% for grade A, 18% for grade B, and 17.2% for grade C. By head rice ratio analysis, the milled rice of Haedamssal was recorded a grade A of 72.9%, representing a 24.5% improvement compared to the 48.4% of original grains. However, the grades B and C of Haedamssal rice were lower than those of original rice. In addition, grade A whiteness of Haedamssal rice was 45.3, which was lower than that of original grains. The color affinity redness was significantly lower in Haedamssal rice than in the screening control. No significant difference was found in the amylose and protein contents of rice before and after selection by the grain color sorter. In contrast, grain viscosity analysis revealed an increase in peak and final viscosities, while the consistence viscosity increased in low grade levels. Our results suggest that the photoelectric grain color sorter could improve the head rice ratio and palatability of early transplanted Hadamssal rice.

Preparation and characterization of Mn doped copper nitride films with high photocurrent response

  • Yu, Aiai;Hu, Ruiyuan;Liu, Wei;Zhang, Rui;Zhang, Jian;Pu, Yong;Chu, Liang;Yang, Jianping;Li, Xing'ao
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1306-1312
    • /
    • 2018
  • The Mn-doped copper nitride ($Cu_3N$) films with Mn concentration of 2.0 at. % have high crystallinity and uniform surface morphology. We found that the as-synthesized Mn-doped $Cu_3N$ films show suitable optical absorption in the visible region and the band gap is ~1.48 eV. A simple photodetector based on Mn doped $Cu_3N$ films was firstly fabricated via magnetron sputtering method. The fabricated device with doping of Mn demonstrated high photocurrent response and fast response shorter than 0.1 s both for rise and decay time superior to the pure $Cu_3N$. Furthermore, the energy levels of Mn-doped Cu3N matched well with ITO and Ag electrode. The excellent photoelectric properties reflect a good balance between sensitivities and response rate. Our investigation reveals the excellent potential of Mn-doped $Cu_3N$ films for application of photodetectors.