Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.010

Preparation and characterization of Mn doped copper nitride films with high photocurrent response  

Yu, Aiai (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT))
Hu, Ruiyuan (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT))
Liu, Wei (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT))
Zhang, Rui (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT))
Zhang, Jian (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT))
Pu, Yong (School of Science, Nanjing University of Posts and Telecommunications (NUPT))
Chu, Liang (School of Science, Nanjing University of Posts and Telecommunications (NUPT))
Yang, Jianping (School of Science, Nanjing University of Posts and Telecommunications (NUPT))
Li, Xing'ao (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT))
Abstract
The Mn-doped copper nitride ($Cu_3N$) films with Mn concentration of 2.0 at. % have high crystallinity and uniform surface morphology. We found that the as-synthesized Mn-doped $Cu_3N$ films show suitable optical absorption in the visible region and the band gap is ~1.48 eV. A simple photodetector based on Mn doped $Cu_3N$ films was firstly fabricated via magnetron sputtering method. The fabricated device with doping of Mn demonstrated high photocurrent response and fast response shorter than 0.1 s both for rise and decay time superior to the pure $Cu_3N$. Furthermore, the energy levels of Mn-doped Cu3N matched well with ITO and Ag electrode. The excellent photoelectric properties reflect a good balance between sensitivities and response rate. Our investigation reveals the excellent potential of Mn-doped $Cu_3N$ films for application of photodetectors.
Keywords
Photocurrent response; Mn doped $Cu_3N$; Magnetron sputtering; Optical band gap;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Yao, J. Shao, Y. Wang, Z. Zhao, G. Yang, Ultra-broadband and high response of the $Bi_2Te_3-Si$ heterojunction and its application as a photodetector at room temperature in harsh working environments, Nanoscale 7 (2015) 12535-12541.   DOI
2 K.T. Lin, H.L. Chen, Y.S. Lai, C.C. Yu, Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths, Nat. Commun. 5 (2014) 4288.   DOI
3 F. Xia, T. Mueller, Y.M. Lin, A.V. Garcia, P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4 (2009) 839-843.   DOI
4 T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications, Nat. Photon. 4 (2010) 297-301.   DOI
5 N.M. Gabor, J.C. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot Carrier-assisted intrinsic photoresponse in graphene, Science 334 (2011) 648-652.   DOI
6 J.H. Luo, H.Y. Wei, Q.L. Huang, X. Hu, H.F. Zhao, R. Yu, D.M. Li, Y.H. Luo, Q.B. Meng, Highly efficient core-shell $CuInS_2-Mn$ doped CdS quantum dot sensitized solar cells, Chem. Commun. 49 (2013) 3881-3883.   DOI
7 J.J. Tian, L.L. Lv, C.B. Fei, Y.J. Wang, X.G. Liu, G.Z. Cao, A highly efficient (> 6%) $Cd_{1−x}Mn_xSe$ quantum dot sensitized solar cell, J. Mater. Chem. A 2 (2014) 19653-19659.   DOI
8 J. Wang, Y. Li, Q. Shen, T. Izuishi, Z.X. Pan, K. Zhao, X.H. Zhong, Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%, J. Mater. Chem. A 4 (2016) 877-886.   DOI
9 R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganese- doped nanocrystals of ZnS, Phys. Rev. Lett. 72 (1994) 416.   DOI
10 R. Beaulac, P.I. Archer, S.T. Ochsenbein, D.R. Gamelin, $Mn^{2+}$-Doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics, Adv. Funct. Mater. 18 (2008) 3873-3891.   DOI
11 D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals, Science 319 (2008) 1776-1779.   DOI
12 Y.T. Dong, J. Choi, H.K. Jeong, D.H. Son, Hot electrons generated from doped quantum dots via up conversion of excitons to hot charge carriers for enhanced photocatalysis, J. Am. Chem. Soc. 137 (2015) 5549-5554.   DOI
13 P.K. Santra, Y.S. Chen, Role of $Mn^{2+}$ in doped quantum dot solar cell, Electrochim. Acta 146 (2014) 654-658.   DOI
14 Q. L. Dai, E. M. Sabio, W. Y. Wang and J. K. Tang, Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance, Appl. Phys. Lett. 104 (2104) 183901.   DOI
15 S. Horoz, Q. Dai, F.S. Maloney, B. Yakami, J.M. Pikal, X. Zhang, J. Wang, W. Wang, J. Tang, Absorption induced by Mn doping of ZnS for improved sensitized quantumdot solar cells, Phys. Rev. Appl. 3 (2015) 024011.   DOI
16 T. Maruyama, T. Morishita, Copper nitride thin films prepared by radio-frequency reactive sputtering, J. Appl. Phys. 78 (1995) 4104-4107.   DOI
17 Z. Yin, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Singlelayer $MoS_2$ phototransistors, ACS Nano 6 (2012) 74-80.   DOI
18 T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering, Thin Solid Films 348 (1999) 8-13.   DOI
19 X.Y. Fan, Z.J. Li, A.L. Meng, Study on the structure, morphology and properties of Fe-doped $Cu_3N$ films, J. Phys. D Appl. Phys. 47 (2014) 185304.   DOI
20 X. Fan, Z. Li, A. Meng, C. Li, Z. Wu, P. Yan, Improving the thermal stability of $Cu_3N$ films by addition of Mn, J. Mater. Sci. Technol. 31 (2015) 822-827.   DOI
21 N. Perea-Lopez, A.L. Elias, A. Berkdemir, A. Castro-Beltran, H.R. Gutierrez, S. Feng, R. Lv, T. Hayashi, F. Lopez-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, M. Terrones, Photosensor device based on few-layered $WS_2$ films, Adv. Funct. Mater. 23 (2013) 5511-5517.   DOI
22 P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, K. Xiao, Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates, Nano Lett. 13 (2013) 1649-1654.   DOI
23 G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, M. Ajayan P, J. Lou, H. Peng, Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application, Nano Lett. 15 (2014) 506-513.
24 C.M. Caskey, R.M. Richards, D.S. Ginley, A. Zakutayev, Thin film synthesis and properties of copper nitride, a metastable semiconductor, Mater. Horiz. 1 (2014) 424-430.   DOI
25 H.W. Lei, G. Yang, X.L. Zheng, Z.G. Zhang, C. Chen, P.L. Qin, Y.F. Li, G.J. Fang, Incorporation of high-mobility and room-temperature-deposited $Cu_xS$ as a hole transport layer for efficient and stable organo-lead halide perovskite solar cells, Sol. RRL 1 (2017) 1700038.   DOI
26 H. Wu, W. Chen, Size-controlled synthesis and application as cathode catalyst in alkaline fuel cells, J. Am. Chem. Soc. 133 (2011) 15236-15239.   DOI
27 N. Lu, A. Ji, Z. Cao, Nearly constant electrical resistance over large temperature range in $Cu_3NMx$ (M= Cu, Ag, Au) compounds, Sci. Rep. 3 (2013) 3090.   DOI
28 P.X. Xi, Z.H. Xu, D.Q. Gao, F.J. Chen, D.S. Xue, C.L. Tao, Z.N. Chen, Solvothermal synthesis of magnetic copper nitride nanocubes with highly electrocatalytic reduction properties, RSC Adv. 4 (2014) 14206-14209.
29 J. Xiao, M. Qi, Y. Cheng, A.H. Jiang, Y.P. Zeng, J.F. Ma, Influences of nitrogen partial pressure on the optical properties of copper nitride films, RSC Adv. 6 (2016) 40895-40899.   DOI
30 S. Ghosh, F. Singh, D. Choudhary, D.K. Avasthi, V. Ganesan, Effect of substrate temperature on the physical properties of copper nitride films by rf reactive sputtering, Surf. Coating. Technol. 142 (2001) 1034-1039.
31 A.L. Ji, N.P. Lu, L. Gao, W.B. Zhang, L.G. Liao, Electrical properties and thermal stability of Pd-doped copper nitride films, J. Appl. Phys. 113 (2013) 043705.   DOI
32 C. Navio, J. Alvarez, M.J. Capitan, J. Camarero, R. Miranda, Thermal stability of Cu and Fe nitrides and their applications for writing locally spin valves, Appl. Phys. Lett. 94 (2009) 263112.   DOI
33 U. Hahn, W. Weber, Electronic structure and chemical-bonding mechanism of $Cu_3N$, $Cui_3NPd$, and related Cu (I) compounds, Phys. Rev. B 53 (1996) 12684.   DOI
34 T. Maruyama, T. Morishita, Copper nitride and tin nitride thin films for write-once optical recording media, Appl. Phys. Lett. 69 (1996) 890-891.   DOI
35 A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, Defect tolerant semiconductors for solar energy conversion, J. Phys. Chem. Lett. 5 (2014) 1117-1125.   DOI
36 A. Zakutayev, Design of nitride semiconductors for solar energy conversion, J. Mater. Chem. A 4 (2016) 6742-6754.   DOI
37 X.Y. Fan, Z.J. Li, A.L. Meng, C. Li, Z.G. Wu, P.X. Yan, Study on the structure, morphology and properties of Fe-doped $Cu_3N$ films, J. Phys. D Appl. Phys. 47 (2014) 185304.   DOI
38 Y.H. Zhao, J.Y. Zhao, T. Yang, J. Zhang, J.P. Yang, X.A. Li, Enhanced write-once optical storage capacity of $Cu_3N$ film by coupling with an $Al_2O_3$ protective layer, Ceram. Int. 42 (2016) 4486-4490.   DOI
39 W. Zhu, X. Zhang, X.N. Fu, Y.N. Zhou, S.Y. Luo, X.J. Wu, Resistive-switching behavior and mechanism in copper-nitride thin films prepared by DC magnetron sputtering, Phys. Status Solidi A 209 (2012) 1996-2001.   DOI
40 J.R. Wang, F. Li, X.B. Liu, H.C. Zhou, X.F. Shao, Y.Y. Qu, M.W. Zhao, $Cu_3N$ and its analogs: a new class of electrodes for lithium ion batteries, J. Mater. Chem. A 5 (2017) 8762-8768.   DOI
41 H.Y. Chen, X.A. Li, J.Y. Zhao, Z.L. Wu, T. Yang, Y.W. Ma, W. Huang, First principles study on the influence of electronic configuration of M on $Cu_3NM$: M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Comput. Theor. Chem. 1027 (2014) 33-38.   DOI