Browse > Article
http://dx.doi.org/10.3807/KJOP.2020.31.1.037

Emitter Electrode Design to Optimize the Optical and Electrical Characteristics of Planar Solar Cells  

Lee, Sangbok (School of Electronics Engineering, Kyungpook National University)
Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
Publication Information
Korean Journal of Optics and Photonics / v.31, no.1, 2020 , pp. 37-44 More about this Journal
Abstract
In this study, we propose a design method to optimize the electro-optical efficiency of a planar solar cell structure by adjusting one-dimensionally periodic emitter electrodes. Since the aperture ratio of the active layer decreases as the period of the emitter electrode decreases, the amount of light absorption diminishes, affecting the performance of the device. Here we design the optimal structure of the periodic emitter electrode in a simple planar solar cell, by simulation. In terms of optics, we find the condition that shows optical performance similar to that of a reference without the emitter electrode. In addition, the optimized electrode structure is extracted considering both the optical and electrical efficiency. This work will help to increase the utilization of solar cells by suggesting a structure that can most efficiently transfer charge generated by photoelectric conversion to the electrodes.
Keywords
Solar cell; Planar solar cell; Emitter electrode; Optical properties; Electrical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Park, J. Cho, Y. Lee, J. Park, M. Ju, Y.-J. Lee, and J. Yi, "Technology trends and prospects of silicon solar cells," Curr. Photovoltaics Res. 1, 11-16 (2013).
2 J. Zhao, A. Wang, and M. A. Green, "24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates," Prog. Photovoltaics 7, 471-474 (1999).   DOI
3 K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE J. Photovoltaics 4, 1433-1435 (2014).   DOI
4 M.-S. Kim, M-.G. Kang, L. J. Guo, and J. Kim, "Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance," Appl. Phys. Lett. 92, 133301 (2008).   DOI
5 M. Li, H. Ma, H. Liu, D. Wu, H. Niu, and W. Cai, "Effect of electrode geometry on photovoltaic performance of polymer solar cells," J. Phys. D: Appl. Phys. 47, 435104 (2014).   DOI
6 E. D. Palik, "Optical parameters for the materials in HOC I, HOC II, and HOC III," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Orlando, USA, 1997), Vol. 3, pp. 187-227.
7 H.-J. Hagemann, W. Gudat, and C. Kunz, "Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and $Al_{2}O_{3}$," J. Opt. Soc. Am. 65, 742-744 (1975).   DOI
8 J. G. Fossum and E. L. Burgess, "High-efficiency $p^{+}-n-n^{+}$ back-surface-field silicon solar cells," Appl. Phys. Lett. 33, 238 (1978).   DOI
9 M. Becker, U. Gosele, A. Hofmann, and S. Christiansen, "Highly p-doped regions in silicon solar cells quantitatively analyzed by small angle beveling and micro-Raman spectroscopy," J. Appl. Phys. 106, 074515 (2009).   DOI
10 J. M. Gineste, G. Flamant, and G. Olalde, "Incident solar radiation data at Odeillo solar furnaces," J. Phys. IV France 9, Pr3-623-Pr3-627 (1999).
11 A. V. D. Rosa, Fundamentals of Renewable Energy Processes, 2nd ed, (Academic Press, Boston, USA, 2009), pp. 591-682.
12 M. Grundmann, The physics of semiconductors: An introduction including devices and nanophysics, 2nd ed. (Springer, Berlin, Germany, 2006), pp. 473-521.
13 NREL, Best Research-Cell Efficiency Chart (National Renewable Energy Laboratory, 2019), https://www.nrel.gov/pv/cellefficiency.html.
14 H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," J. Mater. Res. 19, 1924-1945 (2004).   DOI
15 R. Schroeder and B. Ullrich, "Photovoltaic hybrid device with broad tunable spectral response achieved by organic/inorganic thin-film heteropairing," Appl. Phys. Lett. 81, 556-558 (2002).   DOI
16 C. H. Lee, G. Yu, D. Moses, and A. J. Heeger, "Picosecond transient photoconductivity in poly (p-phenylenevinylene)," Phys. Rev. B 49, 2396-2407 (1994).   DOI
17 G. Wei, S. Wang, K. Sun, M. E. Thompson, and S. R. Forrest, "Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells," Adv. Energy Mater. 1, 184-187 (2011).   DOI
18 C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183-185 (1986).   DOI
19 S. Badgujar, C. E. Song, S. Oh, W. S. Shin, S.-J. Moon, J.-C. Lee, I. H. Jung, and S. K. Lee,, "Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor," J. Mater. Chem. A 4, 16335-16340 (2016).   DOI
20 N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science 258, 1474-1476 (1992).   DOI
21 W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, "Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency," Adv. Mater. 29, 1604059 (2017).   DOI
22 M. Wolf, "A new look at silicon solar cell performance," Energy Convers. 11, 63-73 (1971).   DOI
23 P. V. Kamat, "Meeting the clean energy demand: Nanostructure architectures for solar energy conversion," J. Phys. Chem. C 7, 2834-2860 (2007).   DOI
24 J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, "A polymer tandem solar cell with 10.6% power conversion efficiency," Nat. Commun. 4, 1446 (2013).   DOI
25 S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, D. D. C. Bradley, and Y. Kim, "Inverted polymer fullerene solar cells exceeding 10% efficiency with poly (2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers," Nat. Commun. 6, 8929 (2015).   DOI
26 M. A. Green, "The path to 25% silicon solar cell efficiency: History of silicon cell evolution," Prog. Photovoltaics 17, 183-189 (2009).   DOI