DOI QR코드

DOI QR Code

Emitter Electrode Design to Optimize the Optical and Electrical Characteristics of Planar Solar Cells

평판형 태양 전지의 광학 및 전기적 특성 최적화를 위한 에미터 전극 설계 연구

  • Lee, Sangbok (School of Electronics Engineering, Kyungpook National University) ;
  • Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
  • 이상복 (경북대학교 IT대학 전자공학부) ;
  • 도윤선 (경북대학교 IT대학 전자공학부)
  • Received : 2019.11.19
  • Accepted : 2020.01.07
  • Published : 2020.02.25

Abstract

In this study, we propose a design method to optimize the electro-optical efficiency of a planar solar cell structure by adjusting one-dimensionally periodic emitter electrodes. Since the aperture ratio of the active layer decreases as the period of the emitter electrode decreases, the amount of light absorption diminishes, affecting the performance of the device. Here we design the optimal structure of the periodic emitter electrode in a simple planar solar cell, by simulation. In terms of optics, we find the condition that shows optical performance similar to that of a reference without the emitter electrode. In addition, the optimized electrode structure is extracted considering both the optical and electrical efficiency. This work will help to increase the utilization of solar cells by suggesting a structure that can most efficiently transfer charge generated by photoelectric conversion to the electrodes.

본 연구에서는 기본적인 평면 태양 전지 구조에 1차원 주기를 가지는 에미터 전극 배치를 통해 광학 및 전기적 효율을 최적화하는 설계방법을 제안한다. 에미터 전극의 주기가 줄어들면 애퍼처 비율이 감소해 빛 흡수율이 줄어들어 태양 전지 성능 저하에 영향을 끼친다. 본 연구에서는 시뮬레이션을 통해 가장 간단한 평판형 태양 전지 구조 내에서 에미터 전극 배열의 최적안을 제시하였다. 광학적 측면에서 에미터 전극이 없이 광흡수층 전면에서의 광흡수를 하는 레퍼런스 소자와 성능이 유사한 조건을 도출했다. 그리고 광흡수 및 전기적 효율 측면을 모두 고려하여 가장 효과적인 전극 구조를 제안하였다. 본 연구 결과는 광전 변환으로 생성된 전하를 전극으로 가장 효율적으로 전달할 수 있는 구조를 제안함으로써, 대체 에너지원에서 큰 비중을 차지하고 있는 태양 전지의 활용성을 높이는데 기여할 것이다.

Keywords

References

  1. M. Wolf, "A new look at silicon solar cell performance," Energy Convers. 11, 63-73 (1971). https://doi.org/10.1016/0013-7480(71)90074-X
  2. P. V. Kamat, "Meeting the clean energy demand: Nanostructure architectures for solar energy conversion," J. Phys. Chem. C 7, 2834-2860 (2007). https://doi.org/10.1021/jp066952u
  3. J. M. Gineste, G. Flamant, and G. Olalde, "Incident solar radiation data at Odeillo solar furnaces," J. Phys. IV France 9, Pr3-623-Pr3-627 (1999).
  4. A. V. D. Rosa, Fundamentals of Renewable Energy Processes, 2nd ed, (Academic Press, Boston, USA, 2009), pp. 591-682.
  5. M. Grundmann, The physics of semiconductors: An introduction including devices and nanophysics, 2nd ed. (Springer, Berlin, Germany, 2006), pp. 473-521.
  6. NREL, Best Research-Cell Efficiency Chart (National Renewable Energy Laboratory, 2019), https://www.nrel.gov/pv/cellefficiency.html.
  7. H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," J. Mater. Res. 19, 1924-1945 (2004). https://doi.org/10.1557/JMR.2004.0252
  8. R. Schroeder and B. Ullrich, "Photovoltaic hybrid device with broad tunable spectral response achieved by organic/inorganic thin-film heteropairing," Appl. Phys. Lett. 81, 556-558 (2002). https://doi.org/10.1063/1.1494117
  9. C. H. Lee, G. Yu, D. Moses, and A. J. Heeger, "Picosecond transient photoconductivity in poly (p-phenylenevinylene)," Phys. Rev. B 49, 2396-2407 (1994). https://doi.org/10.1103/physrevb.49.2396
  10. G. Wei, S. Wang, K. Sun, M. E. Thompson, and S. R. Forrest, "Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells," Adv. Energy Mater. 1, 184-187 (2011). https://doi.org/10.1002/aenm.201100045
  11. C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183-185 (1986). https://doi.org/10.1063/1.96937
  12. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science 258, 1474-1476 (1992). https://doi.org/10.1126/science.258.5087.1474
  13. S. Badgujar, C. E. Song, S. Oh, W. S. Shin, S.-J. Moon, J.-C. Lee, I. H. Jung, and S. K. Lee,, "Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor," J. Mater. Chem. A 4, 16335-16340 (2016). https://doi.org/10.1039/C6TA06367E
  14. W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, "Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency," Adv. Mater. 29, 1604059 (2017). https://doi.org/10.1002/adma.201604059
  15. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, "A polymer tandem solar cell with 10.6% power conversion efficiency," Nat. Commun. 4, 1446 (2013). https://doi.org/10.1038/ncomms2411
  16. S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, D. D. C. Bradley, and Y. Kim, "Inverted polymer fullerene solar cells exceeding 10% efficiency with poly (2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers," Nat. Commun. 6, 8929 (2015). https://doi.org/10.1038/ncomms9929
  17. M. A. Green, "The path to 25% silicon solar cell efficiency: History of silicon cell evolution," Prog. Photovoltaics 17, 183-189 (2009). https://doi.org/10.1002/pip.892
  18. C. Park, J. Cho, Y. Lee, J. Park, M. Ju, Y.-J. Lee, and J. Yi, "Technology trends and prospects of silicon solar cells," Curr. Photovoltaics Res. 1, 11-16 (2013).
  19. J. Zhao, A. Wang, and M. A. Green, "24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates," Prog. Photovoltaics 7, 471-474 (1999). https://doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
  20. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE J. Photovoltaics 4, 1433-1435 (2014). https://doi.org/10.1109/JPHOTOV.2014.2352151
  21. M.-S. Kim, M-.G. Kang, L. J. Guo, and J. Kim, "Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance," Appl. Phys. Lett. 92, 133301 (2008). https://doi.org/10.1063/1.2895058
  22. M. Li, H. Ma, H. Liu, D. Wu, H. Niu, and W. Cai, "Effect of electrode geometry on photovoltaic performance of polymer solar cells," J. Phys. D: Appl. Phys. 47, 435104 (2014). https://doi.org/10.1088/0022-3727/47/43/435104
  23. E. D. Palik, "Optical parameters for the materials in HOC I, HOC II, and HOC III," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Orlando, USA, 1997), Vol. 3, pp. 187-227.
  24. H.-J. Hagemann, W. Gudat, and C. Kunz, "Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and $Al_{2}O_{3}$," J. Opt. Soc. Am. 65, 742-744 (1975). https://doi.org/10.1364/JOSA.65.000742
  25. J. G. Fossum and E. L. Burgess, "High-efficiency $p^{+}-n-n^{+}$ back-surface-field silicon solar cells," Appl. Phys. Lett. 33, 238 (1978). https://doi.org/10.1063/1.90311
  26. M. Becker, U. Gosele, A. Hofmann, and S. Christiansen, "Highly p-doped regions in silicon solar cells quantitatively analyzed by small angle beveling and micro-Raman spectroscopy," J. Appl. Phys. 106, 074515 (2009). https://doi.org/10.1063/1.3236571