• 제목/요약/키워드: Photocatalytic reduction

검색결과 94건 처리시간 0.027초

Catalytic Activity of BiVO4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제51권3호
    • /
    • pp.240-249
    • /
    • 2016
  • $BiVO_4$ nanomaterial was synthesized from bismuth (III) nitrate pentahydrate [$Bi(NO_3)_3{\cdot}5H_2O$] and ammonium vanadate (V) [$NH_4VO_3$]. The $BiVO_4$-graphene nanocomposite was fabricated by calcining the $BiVO_4$ nanomaterial and graphene under an oxygen-free atmosphere at $700^{\circ}C$. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize structural and morphological properties of samples. The catalytic activity of the $BiVO_4$-graphene nanocomposite was studied for the reduction of 4-nitrophenol, 3-nitrophenol and 2-nitrophenol by sodium borohydride [$NaBH_4$]. The photocatalytic activity of the $BiVO_4$-graphene nanocomposite was demonstrated by the degradation of organic dyes like BG, MB, MO and RhB under irradiation at 365 nm. The catalytic and photocatalytic activity were studied by UV-vis spectrophotometry.

Analysis on an Oxidation-Reduction Reaction of Photocatalytic Plasma Complex Module

  • KIM, Young-Do;KWON, Woo-Taeg
    • 웰빙융합연구
    • /
    • 제5권2호
    • /
    • pp.21-27
    • /
    • 2022
  • Purpose: This study is about photocatalytic technology and plasma oxidation-reduction technology. To the main cause of exposure to odor pollution, two deodorization techniques were applied to develop a module with higher removal efficiency and ozone reduction effect. Research design, data and methodology: A composite module was constructed by arranging two types of dry deodorization equipment (catalyst, adsorbent) in one module. This method was designed to increase the responsiveness to the components of complex odors and the environment. standard, unity, two types of oxidizing photo-catalyst technology and plasma dry deodorization device installed in one module to increase the potential by reduction to 76% of ozone, 100%, and 82%. Results: The complex odor disposal efficiency was 92%. Ammonia was processed with 50% hydrogen sulfide and 100% hydrogen sulfide, and ozone was 0.01ppm, achieving a target value of 0.07ppm or less. The combined odor showed a disposal efficiency of 93%, ammonia was 82% and hydrogen sulfide was 100% processed, and ozone achieved a target value of 0.07 ppm or less. Conclusions: Ozone removal efficiency was 76% by increasing Oxidation-Reduction Reaction(ORR). The H2S removal efficiency of the deodorizer was higher than that of the biofilter system currently used in sewage disposal plants.

광촉매/광산화를 이용한 VOCs 처리장치 개발 (Development for UV/TiO2 Photocatalytic Oxidation Indoor Air Compound Process)

  • 전보경;최금찬;서정민
    • 한국환경과학회지
    • /
    • 제15권9호
    • /
    • pp.855-864
    • /
    • 2006
  • This study introduces a method to eliminate formaldehyde and benzene, toluene from indoor air by means of a photocatalytic oxidation reaction. In the method introduced, for the good performance of the reaction, the effect and interactions of the $TiO_2$ catalyst and ultraviolet in photocatalytic degradation on the reaction area, dosages of catalysts, humidity and light should be precisely examined and controled. Experiments has been carried out under various intensities of UV light and initial concentrations of formaldehyde, benzene and toluene to investigate the removal efficiency of the pollutants. Reactors in the experiments consist of an annular type Pyrex glass flow reactor and an 11W germicidal lamp. Results of the experiments showed reduction of formaldehyde, benzene and toluene in ultraviolet $/TiO_2/$ activated carbon processes (photooxidation-photocatalytic oxidation-adsorption processes), from 98% to 90%, from 98% to 93% and from 99% to 97% respectively. Form the results we can get a conclusion that a ultraviolet/Tio2/activated carbon system used in the method introduced is a powerful one for th treatment of formaldehyde, benzene and toluene of indoor spaces.

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • 제4권1호
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity

  • Wang, Huiqin;Wu, Dongyao;Liu, Chongyang;Guan, Jingru;Li, Jinze;Huo, Pengwei;Liu, Xinlin;Wang, Qian;Yan, Yongsheng
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.164-174
    • /
    • 2018
  • The purpose of this work designed hybrid-structured and plasma effect photocatalyst of $Ag/In_2O_3/TiO_2/HNTs$ via sol-gel and photo-reduction methods. The structures, morphologies, optical and photoelectric performances of as-prepared photocatalysts were characterized via XRD, TEM, XPS, BET, UV-vis DRS, PL and photocurrents. The photocatalytic activity was evaluated by degradation of TC. The results showed that the hybrid-structure and plasma effect can effectively cause the multi-transfer of electrons and increase the separation rate of electron and hole pairs which obtained high photocatalytic activity. The photocatalytic degradation processes reveal that $^{\bullet}O_2{^-}$ and $h^+$ are major active species.

Photo-catalytic Properties of Nanotubes Synthesized using TiO2 Nanoparticles

  • Kim, Hyun;Kim, Dong Yun;Yang, Bee Lyong
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.239-243
    • /
    • 2018
  • Up to now, microstructure changes of photocatalysts have been studied to improve photocatalytic activity. Especially, to improve the adsorption of reactants and reactive sites, porous and fine crystal structures have received much attention because of their large specific surface area. In this study, $TiO_2$ nanotubes were synthesized by hydrothermal method using $TiO_2$ nanoparticles; nanotubes were evaluated by oxidized methylene blue reduction test. Using synthesized $TiO_2$ nanotubes, results of TEM showed that the $TiO_2$ nanoparticles were changed into folding sheets and nanotubes. XRD results showed that the peaks of the nanoparticles almost disappeared and only the rutile (110) and anatase (200) peaks were observed. Comparison of photocatalytic properties of nanoparticles and nanotube structures was performed by measuring the UV-vis absorbance with reducing oxidized methylene blue. As a result, the reduction rate of nanotubes was found to be $0.24{\mu}mol/s$, which was 2.6 times higher than the rate of reduction of nanoparticles.

광촉매를 이용한 탄화수소 저감 연구 (A Study of Hydrocarbon Reduction with Photocatalysts)

  • 손건석;고성혁;김대중;이귀영
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.47-53
    • /
    • 2000
  • To overcome the shortage of conventional TWC that is activated at high temperature, higher than 25$0^{\circ}C$, photocatalyst is considered as an new technology. Because the photocatalytic reaction of photocatalyst is not a thermo mechanical reaction, it is necessary to heat the system to start the reaction. It can be activated just by ultra violet light that includes wavelengths shorter than 400 nanometers even at ambient temperature. In this study photocatalytic reduction of hydrocarbon was investigated with a model gas test. To understand the effects of co-existence gases on the hydrocarbon reduction by photoreaction, CO and NO, $O_2, H_2O$ gases those are components of exhaust gases of gasoline engine are supplied with C3H8/N2 to a photoreactor. The photoreactor contains $TiO_2$ photocatalyst powders and a UV bulb. The results show that oxygen is the most important factor to reduce HC emission with photocatalyst. Photocatalyst seems to have a good probability for automotive application to reduce cold start HC emissions.

  • PDF

TiO2 담지 세라믹 필터를 활용한 아세톤 제어에 관한 연구 (Reduction of Gaseous Acetone by using TiO2 Coated Woven Filters)

  • 윤정호;박덕신;이주열;조영민
    • 한국대기환경학회지
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2003
  • A new type of catalytic filers has been developed in this work. A porous photocatalytic filter was prepared by coating the titania (anatase phase) powder onto the woven metal mesh. The coating sol was prepared with unique cera-mic binder, and would assist drying condition and enhance the mechanical strength of the final ceramic filers. As a result of the test for acetone decomposition, it was found to be quite effective for the photocatalytic reaction as good at conventional glass reactors which were coated inside. The present filter type reactor is expected as one of plausible devices for the simultaneous treatment of gas - particulate materials.

UV Light Induced Photocatalytic Degradation of Cyanides in Aqueous Solution over Modified $TiO_2$

  • 김형주;김재현;이청학;현택환;최원용;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권12호
    • /
    • pp.1371-1374
    • /
    • 2001
  • Metal doping was adopted to modify TiO2 (P-25) and enhance the photocatalytic degradation of harmful cyanides in aqueous solution. Ni, Cu, Co, and Ag doped TiO2 were found to be active photocatalysts for UV light induced degradation of aqueous cyanides generating cyanate, nitrate and ammonia as main nitrogen-containing products. The photoactivity of Ni doped TiO2 was greatly affected by the state of Ni, that is, the crystal size and the degree of reduction of Ni. The modification effects of some mixed oxides, that is, Ni-Cu/TiO2 were also studied. The activity of Ni-Cu/TiO2 for any ratio of Cu/Ni was higher than that of Ni- or Cu-doped TiO2, and the catalyst at the Cu/Ni ratio of 0.3 showed the highest activity for cyanide conversion.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.