• Title/Summary/Keyword: Photocatalytic Process

Search Result 236, Processing Time 0.023 seconds

The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System (CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향)

  • Cho, Sang-Hyun;Cui, Mingcan;Nam, Sang-Geon;Jung, Hee-Suk;Khim, Jee-Hyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1147-1153
    • /
    • 2010
  • To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination (기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성)

  • Lee, Hyeryeon;Lim, Chaehun;Lee, Raneun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.632-639
    • /
    • 2021
  • In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.

Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts (TiO2/CdS 복합광촉매의 밴드갭 에너지 특성과 광촉매 효율)

  • Lee, Jong-Ho;Heo, Sujeong;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.790-797
    • /
    • 2019
  • To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.

Purification of BTEX at Indoor Air Levels Using Carbon and Nitrogen Co-Doped Titania under Different Conditions

  • Jo, Wan-Kuen;Kang, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1321-1331
    • /
    • 2012
  • To date, carbon and nitrogen co-doped photocatalysts (CN-$TiO_2$) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-$TiO_2$ photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-$TiO_2$ photocatalytic system were higher than those of the $TiO_2$ system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L $min^{-1}$, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-$TiO_2$ photocatalytic technology to purification of indoor air BTEX.

Characteristics of Ag ions Photoadsorption Using Photocatalytic TiO2 Nanocrystalline Powder (광촉매용 TiO2 나노분말을 이용한 Ag이온의 흡착 특성)

  • 이종국;유해근;황규홍;서동석;강희석;배현숙;김흥회
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.535-539
    • /
    • 2002
  • In this study photoadsorption propreties of Ag ion in AgNO$_3$ solution by TiO$_2$nanopowder synthesized by homogeneous precipitation process at low temperature were investigated. It was found that the photocatalytic redliction in AgNO$_3$solution was occurred by TiO$_2$nanopowder even under th sun light irradiation, although the reduction of Ag ions was slow with th small adsorption of 9.32 ppm. Notably the Ag adsorption was promoted in th dark condition probably owing to the chestnut bur shape of TiO$_2$ nanopowder itself. In the application of UV the Ag ions were completely adsorbed within 120 min, showing more significant photocatalytic reaction. The measured adsorption reaction rate and adsorption equilibrium rate constants were 0.0004 g/min and 1494.20(120 $m^2$/g), respectively.

Synthesis and Characteristics of Type-II ZnO/ZnSe Core/Shell Heterostructures for High Efficient Photocatalytic Activity (Type-II ZnO/ZnSe 코어/쉘 이종 구조 합성 및 광촉매활성 평가)

  • Lee, Woo-Hyoung;Choi, Kwang-Il;Kang, Dong-Cheon;Beak, Su-Woong;Lee, Suk-Ho;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Recently, various type of nanomaterials such as nanorod, nanowire, nanotube and their core/shell nanostructures have attracted much attention in photocatalyst due to their unique properties. Among them, Type-II core/shell heterostructures have extensively studied because it has exhibited improved electrical and optical properties against their single-component nanostructure. Such structures are expected to offer high absorption efficiency and fast charge transport due to their stepwised energetic combination and large internal surface area. Thus, it has been considered as potential candidates for high efficient photocatalytic activity. In this work, we introduce a novel chemical conversion process to synthesize Type-II ZnO/ZnSe core/shell heterostructures. A plausible conversion mechanism to ZnO/ZnSe core/shell heterostructres was proposed based on SEM, XRD, TEM and XPS analysis. The ZnO/ZnSe heterostructures exhibited excellent photocatalytic activity toward the decomposition of RhB dye compared to the ZnO nanorod arrays due to enhanced light absorption and the type-II cascade band structure.

Photocatalytic Properties of WO3 Thin Films Prepared by Electrodeposition Method (전기증착법으로 제조된 WO3 박막의 광촉매 특성)

  • Kang, Kwang-Mo;Jeong, Ji-Hye;Lee, Ga-In;Im, Jae-Min;Cheon, Hyun-Jeong;Kim, Deok-Hyeon;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • Tungsten trioxide ($WO_3$) is a promising candidate as a photocatalyst because of its outstanding electrical and optical properties. In this study, we prepare $WO_3$ thin films by electrodeposition and characterize the photocatalytic degradation of methylene blue using these films. Depending on the voltage conditions (static and pulse), compact and porous $WO_3$ films are fabricated on a transparent ITO/glass substrate. The morphology and crystal structure of electrodeposited $WO_3$ thin films are investigated by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. An application of static voltage during electrodeposition yields a compact layer of $WO_3$, whereas a highly porous morphology with nanoflakes is produced by a pulse voltage process. Compared to the compact film, the porous $WO_3$ thin film shows better photocatalytic activities. Furthermore, a much higher reaction rate of degradation of methylene blue can be achieved after post-annealing of $WO_3$ thin films.

Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation (주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해)

  • Kim, Taehee;Choi, Haryeong;Kim, Younghun;Lee, Jihun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • SnO2 has the wide bandgap which allows it to be used as the photocatalyst. There are many studies to enhance the photocatalytic properties of SnO2. In this study, 3-dimensional SnO2 aerogel was synthesized using epoxide-initiated sol-gel method for the optimal specific surface area. Also, graphene oxide (GO) was added before the gelation process of the aerogel to maximize the specific surface area. Addition of 0.5 wt% of GO would possibly enhance the specific surface area by 1.7 times compared with the bare tin oxide aerogel. Furthermore, enhanced specific surface area could degrade 67.3% of initial Rhodamine B in 120 minutes. To compare with the bare SnO2 aerogel, 0.5 wt% GO addition to SnO2 could double the reaction rate of the photocatalytic degradation.

Study on Photocatalytic Cr(VI) Reduction with Metal Deposited Anodized $TiO_2$ Tube (금속담지된 $TiO_2$ 나노튜브를 활용한 Cr(VI)환원의 광화학적 효율 연구)

  • Heo, Ah-Young;Lee, Chang-Ha;Park, Min-Sung;Shim, Eun-Jung;Yoon, Jae-Kyung;Joo, Hyunk-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.301-306
    • /
    • 2010
  • The present work is performed to photocatalytically reduce Cr(VI) by means of metal deposited anodized $TiO_2$ tubes, which are prepared by anodization of Ti foil followed by metal deposition. Stably immobilized photo-reactive materials are favored in the field of detoxification in a conventional aqueous medium, preventing gradual loss of efficiency and process malfunction due to detachment of the materials. The prepared samples are characterized by SEM, TEM, EDAX, and photocurrent. The metal deposited-$TiO_2$ electrode shows higher efficiency for Cr(VI) reduction (ca. 20%) and higher ability for adsorption (4~5 times) than pure one.

Photocatalytic Degradation of Methyl tert-Butyl Ether (MTBE): A review

  • Seddigi, Zaki S.;Ahmed, Saleh A.;Ansari, Shahid P.;Yarkandi, Naeema H.;Danish, Ekram;Oteef, Mohammed D.Y.;Cohelan, M.;Ahmed, Shakeel;Abulkibash, Abdallah M.
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.11-28
    • /
    • 2014
  • Advanced oxidation processes using UV and catalysts like $TiO_2$ and ZnO have been recently applied for the photocatalytic degradation of MTBE in water. Attempts have been made to replace the UV radiation by the solar spectrum. This review intends to shed more light on the work that has been done so far in this area of research. The information provided will help in crystallizing the ideas required to shift the trend from UV photocatalysis to sunlight photocatalysis. The careful optimization of the reaction parameters and the type of the dopant employed are greatly responsible for any enhancement in the degradation process. The advantage of shifting from UV photocatalysts to visible light photocatalysts can be observed when catalysts like $TiO_2$ and ZnO are doped with suitable metals. Therefore, it is expected that in the near future, the visible light photocatalysis will be the main technique applied for the remediation of water contaminated with MTBE.