• Title/Summary/Keyword: Photocatalytic

검색결과 1,096건 처리시간 0.03초

Treatment of Landfill Leachate by UV/TiO2/H2O2 System (UV/TiO2/H2O2 시스템을 이용한 매립지(埋立地) 침출수(浸出水) 처리(處理))

  • Kim, Sung-Joon;Moon, Jung-Uye
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제11권4호
    • /
    • pp.133-141
    • /
    • 1997
  • In order to treat the landfill leachate, $UV/TiO_2/H_2O_2$ system connected with biological treatment was investigated, and proper pretreatment methods were examined to reduce the load on the system considering economical and technical efficiency. It was more profitable to put $H_2O_2$ into the system in the early stage for the sample which was treated with $H_2SO_4$ to decrease alkalinity and with $FeCl_3-6H_2O$ flocculation. Because the required reaction time run up by increasing $H_2O_2$ input amount, though the COD was reduced slightly, the optimal $H_2O_2$ input amount should be determined for the desired COD and the economical efficiency. The appropriate way to get the lowest COD in the shortest time was the method to treat the sample which was controlled to pH 3.5 after adjusting to pH 12 and put 500 ppm $H_2O_2$ into the system. In that case, to increase $H_2O_2$ input amount was not profitable for the system efficiency. The sufficient photocatalytic excited time was required to reduce the photocatalytic decomposition time for the sample which was gone through the alkali state.

  • PDF

Change in the photocatalytic activity of $TiO_2$ depending on the surface structure

  • Tai, Wei Sheng;Luo, Yuan;Kim, Myoung-Joo;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.348-348
    • /
    • 2010
  • Behaviors of $TiO_2$-based photocatalysts with different surface structures on the removal of gas-phase toluene with and without UV irradiation are reported. P-25(Degussa) $TiO_2$ powder dispersed in distilled water by sonication was deposited on the transparent glasses and then dried. Some of the samples were further annealed in oven for 1 hr. These samples obtained before and after annealing were characterized by Brunauer- Emmett-Teller (BET), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared (FT-IR) spectrometry, respectively. Based on BET and TEM data, no significant structural change upon annealing could be identified. However, the sample without annealing showed a significantly higher ability for removing toluene both in the presence and absence of the UV light. XPS and FT-IR results clearly revealed that the population of the OH groups on the surface of $TiO_2$ was higher for the sample without annealing, indicating that the OH groups can enhance the adsorption capacity and photocatalytic activity of $TiO_2$ for the removal of the gas-phase toluene.

  • PDF

Hydrothermal Synthesis of Cubic Mesocrystal CeO2 for Visible Photocatalytic Degradation of Rhodamine B

  • Yang, Hexiang;Zhou, Mengkai;Meng, Zeda;Zhu, Lei;Chen, Zhigang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • 제25권3호
    • /
    • pp.144-148
    • /
    • 2015
  • Cubic mesocrystal $CeO_2$ was synthesized via a hydrothermal method with glutamic acid ($C_5H_9NO_4$) as a template. The XRD pattern of a calcined sample shows the face-centered cubic fluorite structure of ceria. Transmission electron microscopy (TEM) and the selected-area electron diffraction (SAED) pattern revealed that the submicron cubic mesocrystals were composed of many small crystals attached to each other with the same orientation. The UV-visible adsorption spectrum exhibited the red-shift phenomenon of mesocrystal $CeO_2$ compared to commercial $CeO_2$ particles; thus, the prepared materials show tremendous potential to degrade organic dyes under visible light illumination. With a concentration of a rhodamine B solution of 20 mg/L and a catalyst amount of 0.1 g/L, the reaction showed higher photocatalytic performance following irradiation with a xenon lamp (${\geq}380nm$). The decoloring rate can exceed 100% after 300 min.

Enhanced Self-Cleaning Performance of Ag-F-Codoped TiO2/SiO2 Thin Films

  • Kim, Byeong-Min;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • 제28권11호
    • /
    • pp.620-626
    • /
    • 2018
  • Highly self-cleaning thin films of $TiO_2-SiO_2$ co-doped with Ag and F are prepared by the sol-gel method. The asprepared thin films consist of bottom $SiO_2$ and top $TiO_2$ layers which are modified by doping with F, Ag and F-Ag elements. XRD analysis confirms that the prepared thin film is a crystalline anatase phase. UV-vis spectra show that the light absorption of $Ag-F-TiO_2/SiO_2$ thin films is tuned in the visible region. The self-cleaning properties of the prepared films are evaluated by a water contact angle measurement under UV light irradiation. The photocatalytic performances of the thin films are studied using methylene blue dye under both UV and visible light irradiation. The $Ag-F-TiO_2/SiO_2$ thin films exhibit higher photocatalytic activity under both UV and visible light compared with other samples of pure $TiO_2$, Ag-doped $TiO_2$, and F-doped $TiO_2$ films.

Transparent Black Phosphorus Nanosheet Film for Photoelectrochemical Water Oxidation

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • 제27권3호
    • /
    • pp.217-222
    • /
    • 2021
  • Although monolayer black phosphorus (BP) and few-layer BP nanosheets (NSs) have been extensively studied as promising alternatives to graphene, research has focused primarily on atomically thin-layered BP in an isolated form. In order to realize the practical applications of BP-related devices, a BP film based on continuous networking of few-layer BP NSs should be developed. In this study, a transparent BP film with high quality was fabricated via a vacuum filtration method. An oxygen-free water solvent was used as an exfoliation medium to avoid significant oxidation of the few-layer BP NSs in liquid-phase exfoliation. The exfoliation efficiency from bulk BP to the few-layer BP NSs was estimated at 22%, which is highly efficient for the production of continuous BP film. The characteristics of the high-quality BP film were determined as 98% transparency, minimum oxidation of 18%, structural stability, and an appropriate bandgap of about 1.8 eV as a semiconductor layer. In order to demonstrate the potential of the BP film for photocatalytic activity, we performed photoelectrochemical water oxidation of the transparent BP film. Although its performance should be improved for practical applications, the BP film could function as a photoanode, which offers a new potential semiconductor in water oxidation. We believe that if the BP film is adequately engineered with other catalysts the photocatalytic activity of the BP film will be improved.

Strength Properties of Fine Dust Adsorption Matrix using Photocatalyst TiO2 Rutile Replacement Ratio (광촉매 TiO2 루타일 타입 치환율에 따른 미세먼지 흡착형 경화체의 강도 특성)

  • Kyoung, In-Soo;Lee, Won-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.174-175
    • /
    • 2019
  • Recently, due to air pollution caused by fine dust, it is considered as a social problem. Increasing fine dust has intensified air pollution, causing many diseases and damages. This year, Seoul, South Korea, reached a severe level of fine dust pollution worldwide. The Ministry of Environment has strengthened the environmental standard for fine dust (PM2.5) from $50{\mu}g/m^3$ to $35{\mu}g/m^3$ since March 2018. When fine dust enters the human body, it causes bronchial or skin elongation such as respiratory allergies, irritable pneumonia, asthma and atopy. In this study, $TiO_2$ rutile with photocatalytic activity was used, and materials prepared by rutile sulfuric acid method were used. The photocatalytic activity rate is 95% or more and the density is $4.1g/cm^3$. The matrix was based on cement, and the substitution rate of $TiO_2$ was 0, 5, 10, 15, 20 (%). The test item is flexural strength and compressive strength.

  • PDF

Effect of calcination temperature on photocatalytic activities of Er-TiO2 nanotubes

  • Song, Yo-Seung;Lee, Myung-Hyun;Kim, Bae-Yeon;Lee, Deuk Yong
    • Journal of Ceramic Processing Research
    • /
    • 제20권2호
    • /
    • pp.182-186
    • /
    • 2019
  • 0.7 mol% Er-TiO2 nanotubes were prepared using a sol-gel derived electrospinning and subsequent calcination at intervals of 50 ℃ from 500 ℃ to 650 ℃ to investigate the effect of calcination temperature on the crystal structure and the photocatalytic activity of methylene blue (MB). X-ray diffraction (XRD) results indicated that Er-TiO2 nanotubes calcined at 500 ℃ were composed of anatase only. However, mixed phases of anatase (51%, 55%, 96%) and rutile (49%, 45%, 4%) were observed for the nanotubes calcined at 550 ℃, 600 ℃ and 650 ℃, respectively. As the calcination temperature rose from 500 ℃ to 600 ℃, the Barrette-Emmett-Teller (BET) surface area and degradation kinetic constant increased from 97.77 ㎡/g to 117.62 ㎡/g and from 1.2 × 10-2min-1 to 1.6 × 10-2 min-1, respectively. The Er-TiO2 nanotubes calcined at 600 ℃ exhibited enhanced MB degradation (87%) compared to that of Er-TiO2 nanofibers (37%) due to the synergic combinations of tailored mixed crystals and larger BET area.

Analysis on an Oxidation-Reduction Reaction of Photocatalytic Plasma Complex Module

  • KIM, Young-Do;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • 제5권2호
    • /
    • pp.21-27
    • /
    • 2022
  • Purpose: This study is about photocatalytic technology and plasma oxidation-reduction technology. To the main cause of exposure to odor pollution, two deodorization techniques were applied to develop a module with higher removal efficiency and ozone reduction effect. Research design, data and methodology: A composite module was constructed by arranging two types of dry deodorization equipment (catalyst, adsorbent) in one module. This method was designed to increase the responsiveness to the components of complex odors and the environment. standard, unity, two types of oxidizing photo-catalyst technology and plasma dry deodorization device installed in one module to increase the potential by reduction to 76% of ozone, 100%, and 82%. Results: The complex odor disposal efficiency was 92%. Ammonia was processed with 50% hydrogen sulfide and 100% hydrogen sulfide, and ozone was 0.01ppm, achieving a target value of 0.07ppm or less. The combined odor showed a disposal efficiency of 93%, ammonia was 82% and hydrogen sulfide was 100% processed, and ozone achieved a target value of 0.07 ppm or less. Conclusions: Ozone removal efficiency was 76% by increasing Oxidation-Reduction Reaction(ORR). The H2S removal efficiency of the deodorizer was higher than that of the biofilter system currently used in sewage disposal plants.

Synthesis of NiO and TiO2 Combined SiC Matrix Nanocomposite and Its Photocatalytic MB Degradation

  • Zambaga, Otgonbayar;Jun Hyeok, Choi;Jo Eun, Kim;Byung Jin, Park;Won-Chun, Oh
    • Korean Journal of Materials Research
    • /
    • 제32권11호
    • /
    • pp.458-465
    • /
    • 2022
  • Interest in the use of semiconductor-based photocatalyst materials for the degradation of organic pollutants in a liquid phase has grown, due to their excellent performance and response to the light source. Herein, we fabricated a NiO-SiC-TiO2 ternary structured photocatalyst which had reduced bandgap energy, with strong activation under UV-light irradiation. The synthesized samples were examined using XRD, SEM, EDX, TEM, DRS, EIS techniques and photocurrent measurement. The results confirmed that the two types of metal oxides were well bonded to the SiC fiber surface. The junction of the new photocatalyst exhibited a large number of photoexcited electrons and holes. The holes tended to oxidize the water and form a hydroxyl radical, which promoted the decomposition of methylene blue. The close contact between the 2D SiC fiber and metal oxide semiconductors expanded the scope of absorption wavelength, and enhanced the usability of the ternary photocatalyst for the degradation of methylene blue. Among three synthesized samples, the NiO-SiC-TiO2 showed the best photocatalytic effect, and was considered to have excellent photoelectron transfer due to the synergy effect between the metal oxide and SiC.

Research Trends on Chemical Mechanical Polishing Using Ultraviolet Light (자외선 광을 활용하는 화학기계적 연마에 관한 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.247-254
    • /
    • 2022
  • Chemical mechanical polishing (CMP) is a hybrid surface-polishing process that utilizes both mechanical and chemical energy. However, the recently emerging semiconductor substrate and thin film materials are challenging to process using the existing CMP. Therefore, previous researchers have conducted studies to increase the material removal rate (MRR) of CMP. Most materials studied to improve MRR have high hardness and chemical stability. Methods for enhancing the material removal efficiency of CMP include additional provision of electric, thermal, light, mechanical, and chemical energies. This study aims to introduce research trends on CMP using ultraviolet (UV) light to these methods to improve the material removal efficiency of CMP. This method, photocatalysis-assisted chemical mechanical polishing (PCMP), utilizes photocatalytic oxidation using UV light. In this study, the target materials of the PCMP application include SiC, GaN, GaAs, and Ru. This study explains the photocatalytic reaction, which is the basic principle of PCMP, and reviews studies on PCMP according to materials. Additionally, the researchers classified the PCMP system used in existing studies and presented the course for further investigation of PCMP. This study aims to aid in understanding PCMP and set the direction of future research. Lastly, since there have not been many studies on the tribology characteristics in PCMP, research on this is expected to be required.