Effect of calcination temperature on photocatalytic activities of Er-TiO2 nanotubes

  • Song, Yo-Seung (Department of Materials Engineering, Korea Aerospace University) ;
  • Lee, Myung-Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Bae-Yeon (Department of Materials Science and Engineering, Incheon National University) ;
  • Lee, Deuk Yong (Department of Biomedical Engineering, Daelim University)
  • Published : 2019.04.01

Abstract

0.7 mol% Er-TiO2 nanotubes were prepared using a sol-gel derived electrospinning and subsequent calcination at intervals of 50 ℃ from 500 ℃ to 650 ℃ to investigate the effect of calcination temperature on the crystal structure and the photocatalytic activity of methylene blue (MB). X-ray diffraction (XRD) results indicated that Er-TiO2 nanotubes calcined at 500 ℃ were composed of anatase only. However, mixed phases of anatase (51%, 55%, 96%) and rutile (49%, 45%, 4%) were observed for the nanotubes calcined at 550 ℃, 600 ℃ and 650 ℃, respectively. As the calcination temperature rose from 500 ℃ to 600 ℃, the Barrette-Emmett-Teller (BET) surface area and degradation kinetic constant increased from 97.77 ㎡/g to 117.62 ㎡/g and from 1.2 × 10-2min-1 to 1.6 × 10-2 min-1, respectively. The Er-TiO2 nanotubes calcined at 600 ℃ exhibited enhanced MB degradation (87%) compared to that of Er-TiO2 nanofibers (37%) due to the synergic combinations of tailored mixed crystals and larger BET area.

Keywords

References

  1. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46 (2011) 855-874. https://doi.org/10.1007/s10853-010-5113-0
  2. C.Y.W. Lin, D. Channei, P. Kosky, A. Nakaruk, C.C. Sorrell, Ceram. Intl. 38 (2012) 3943-46. https://doi.org/10.1016/j.ceramint.2012.01.047
  3. B. Murugan, A.V. Ramaswamy, J. Phys. Chem. C 112 (2008) 20429-20442. https://doi.org/10.1021/jp806316x
  4. G. Liu, X. Zhang, Y. Xu, X. Niu, L. Zheng, X. Ding, Chemsphere 59 (2005) 1367-71. https://doi.org/10.1016/j.chemosphere.2004.11.072
  5. D.Y. Lee, B. Kim, N. Cho, Y. Oh, Curr. Appl. Phys. 11 (2011) S324-S327.
  6. D.Y. Lee, N. Cho, Phys. Status Solidi C 9 (2012) 1423-26. https://doi.org/10.1002/pssc.201100221
  7. Y. Song, Y. Kim, D.Y. Lee, M. Lee, B. Kim, J. Nanosci. Nanotechnol. 17 (2017) 7943-7946. https://doi.org/10.1166/jnn.2017.15062
  8. Y. Song, Y. Kim, H. Lee, D.Y. Lee, M. Lee, B. Kim, J. Korean Phys. Soc. 72 (2018) 412-416. https://doi.org/10.3938/jkps.72.412
  9. D.Y. Lee, M. Lee, N. Cho, Curr. Appl. Phys. 12 (2012) 1229-1233. https://doi.org/10.1016/j.cap.2012.03.007
  10. D.Y. Lee, J. Kim, J. Park, Y. Kim, I. Lee, M. Lee, B. Kim, Curr. Appl. Phys. 13 (2013) 1301-1305. https://doi.org/10.1016/j.cap.2013.03.025
  11. D.Y. Lee, B. Kim, S. Lee, M. Lee, Y. Song, J. Lee, J. Korean Phys. Soc. 48 (2006) 1686-1690.
  12. Y. Song, S. Son, D.Y. Lee, M. Lee, B. Kim, J. Ceram. Proc. Res. 17 (2016) 1197-1201.
  13. G. Oh, J. Rho, D.Y. Lee, M. Lee, Y. Kim, Macromol. Res. 26 (2018) 48-53. https://doi.org/10.1007/s13233-018-6005-4
  14. B. Seol, J. Shin, G. Oh, D.Y. Lee, M. Lee, J. Biomed. Eng. Res. 38 (2017) 248-255.
  15. K. M. Parida and N. Sahu, J. Mol. Catal. A: Chem. 287 (2008) 151-158. https://doi.org/10.1016/j.molcata.2008.02.028