• Title/Summary/Keyword: Photocatalytic

Search Result 1,091, Processing Time 0.033 seconds

A Study on the Properties of Waste Gas Reduction in the Photocatalytic Cement (광촉매시멘트의 배기가스 저감 특성에 관한 연구)

  • 이원암;양진;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.355-360
    • /
    • 2003
  • Recently, a cement plays an important roll in the materials field. So, in this research we would like to study on the properties of waste gas reduction in the photocatalytic cement. The fundamental phenomena of waste gas reduction in the photocatalytic cement were observed by the NOx analyzer with reaction chamber, UV Lamp, MFC, and humidity control bath. As a result of this study, the photocatalytic cement used photocatalytic powder, admixture and other materials can obtain NOx gas reduction and its photocatalytic efficiency. Developing for the photocatalytic cement, we need a various study.

  • PDF

A Study on the Properties of Photocatalytic Cement for Waste Gas Reduction (배기가스 제거용 광촉매시멘트의 특성에 관한 연구)

  • Lee, Won-Am;Yang, Jin;Ryu, Jae-Sang;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.425-430
    • /
    • 2002
  • The needs of the times, a cement plays an important roll in the materials field. So, in this research we would like to study on the properties of Photocatalytic Cement for waste gas reduction. The fundamental phenomena of the Photocatalytic Cement were observed by the NOx Analyzer, Bonding strength, SEM, Flow and Surface hardness(Pencil tester). As a result of this study, the Photocatalytic Cement used Photocatalytic powder, admixture and other materials can obtain its physical properties, also photocatalytic efficiency. If we have added a various experiment, we could have to develop the Photocatalytic Cement.

  • PDF

A Study on the Development for Photocatalytic Concrete with Waste Gas Reduction and Self-cleaning (배기가스 제거 및 자기정화용 광촉매 콘크리트 개발 연구)

  • Lee, Won-Am;Yang, Jin;Ryu, Jae-Sang;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.265-270
    • /
    • 2001
  • Nowadays, like any other areas we have asked that the concrete would get more and more properties to increase there performance. So, in this research we are intended to develop the Photocatalytic Concrete which is one of the High Performance Concrete with waste gas reduction and self-cleaning. The fundamental phenomena of the Photocatalytic Concrete were observed by the residue water-weight, SEM, flow and surface hardness(Pencil tester). As a result of this study, the Photocatalytic Concrete used Photocatalytic powder, OPC admixture and other materials can obtain its properties, also photocatalytic efficiency. Last of all, we are convinced of the Photocatalytic Concrete possibility and make an effort to develop its properties added a various study.

  • PDF

A Study on the Property of Photocatalytic Concrete (광촉매 콘크리트의 특성에 관한 연구)

  • Lee, Won-Am;Yang, Jin;Ryu, Jae-Sang;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.575-580
    • /
    • 2002
  • The most recent, like any other field we have requested that the concrete would increase more a performance. So, in this research we are intended to study on the property of Photocatalytic Concrete which is one of the High Performance Concrete. The fundamental phenomena of the Photocatalytic Concrete were observed by the NOx Analyzer, Bonding strength, SEM, Flow and Surface hardness(Pencil tester). As a result of this study, the Photocatalytic Concrete used Photocatalytic powder, admixture and other materials can obtain its properties, also photocatalytic efficiency(NOx reduction). Also, we have convinced of the Photocatalytic Concrete possibility and put on a spurt to improve its properties added a various experiment.

  • PDF

Degradation of Volatile Hydrocarbons Using Continuous-Flow Photocatalytic Systems with Enhanced Catalytic Surface Areas

  • Jo, Wan-Kuen;Yang, Sung-Hoon;Shin, Seung-Ho;Yang, Sung-Bong
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Limited information is available on the degradation of volatile hydrocarbons determined via the use of plate-inserted photocatalytic reactors. This has led to the evaluation of surface areas of cylindrical continuous-flow photocatalytic reactors for the degradation of three selected aromatic hydrocarbons. Three types of reactors were prepared: a double cylinder-type, a single cylindrical-type without plates and a single cylindrical-type with inserted glass tubes. According to diffuse reflectance, FTIR and X-ray diffraction (XRD) spectroscopy, the surface characteristics of a coated photocatalyst were very similar to those of raw $TiO_2$, thereby suggesting that the coated photocatalyst exhibited the same photocatalytic activity as the raw $TiO_2$. The photocatalytic degradation efficiencies were significantly or slightly higher for the single cylinder-type reactor than for the double cylinder-type reactor which had a greater catalytic surface area. However, for all target compounds, the degradation efficiencies increased gradually when the number of plates was increased. Accordingly, it was suggested that the surface area being enhanced for the plate-inserted reactor would elevate the photocatalytic degradation efficiency effectively. In addition, this study confirmed that both initial concentrations of target compounds and flow rates were important parameters for the photocatalytic removal mechanism of these plate-inserted photocatalytic reactors.

Photocatalytic degradation of TCE using solar energy in POFR (플라스틱 광섬유 광촉매 반응기에서 태양에너지를 이용한 TCE의 광촉매 분해)

  • Jeong, Hee-Rok;Moon, Il;Joo, Hyun-Ku;Jun, Myung-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.57-65
    • /
    • 2002
  • The photocatalytic degradation of TCE using solar energy in POFR was studied. The use of solar energy was investigated in plastic optica fiber photocatalytic reactor (POFR). In POFR, the main parameters of photocatalytic degradation of TCE were lihgt intensity, thickness of $TiO_2$-coated film on plastic fiber core, the same of total $TiO_2$-coated surface area with changed length. We studied the apparent photonic efficiency and photocatalytic degradation rate of TCE in POFR. The apparent photonic efficiency of various light intensities was decreased by an incresed intensities. The photocatalytic activities of $TiO_2$-coated optical fiber reactor system depended on the coating thickness, and total clad-stripped surface area of POF. Photocatalytic degradation of trichloroethylene ($C_2HCl_3$, TCE) in the gas-phase was elucidated by using $TiO_2$-coated plastic optical fiber reactor. In TCE degradation, in-situ FTIR measurement resulted in mineralization into $CO_2$.

Evaluation of Self-Cleaning Performance of Mortar Using Nano-Titanium Dioxide Photocatalytic Coating (나노 이산화티탄 광촉매 코팅을 적용한 모르타르의 자기정화성능 평가)

  • Yang, In-Hwan;Jeon, Hyo-Jin;Lee, Seung-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.56-65
    • /
    • 2022
  • This paper aims at estimating self-cleaning performance of mortar coated with photocatalytic suspension under various conditions. Experimental variables included the concentration (1.5 % and 3.0 %) of photocatalytic suspension for coating mortar specimen, the presence of hydrophilic agent in photocatalytic suspension, and applying the primer on the surface of mortar. The color change of methylene blue solution increased and accordingly self-cleaning performance increased as photocatalytic concentration increased. The presence of hydrophilic agent in photocatalytic suspension slightly decreased the self-cleaning performance compared to the conventional photocatalytic suspension. Test results also showed that mortar specimen including primer and specimen not including primer did not show significantly different self-cleaning performance. In addition, cracks on the surface of mortar specimens decreased as the photocatalytic concentration increased. Therefore, increase in cracks on the surface of mortar at different photocatalytic concentration might adversely affect the self-cleaning performance of mortar specimens.

Durability of Photocatalytic Cement after Nitric Oxide-Wet-Dry Cycling

  • Lee, Bo Yeon;Kurtis, Kimberly E.
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.359-368
    • /
    • 2014
  • Photocatalytic cement has been receiving attention due to its high oxidation power that reduces nitrogen oxide, thus contributing to a clean atmospheric environment. However, there has not yet been a thorough investigation on the effect of photocatalytic reactions on the durability of cementitious material, the parent material. In this study, photocatalytic cement samples were exposed to nitric oxide gas and UV along with cycles of wetting and drying to simulate environmental conditions. The surface of samples was characterized mechanically, chemically, and visually during the cycling. The results indicate that that the photocatalytic efficiency decreased with continued NO oxidation. The pits found from SEM indicated that chemical deterioration, such as acid attack or leaching, did occur. However, this was not confirmed by X-ray diffraction. The hardness was not affected, probably due to the formation of CSH as evidenced by the XRD pattern. In conclusion, it was found that photocatalysis could alter cementitious materials both chemically and mechanically, which could further affect long-term durability.

A Study on Degradation of Nonylphenol Polyethoxylate Metabolites Using Uv / Photocatalytic Silicagel Treatment

  • Asano, Masahiro;Kishimoto, Naoyuki;Jiku, Fumihiko;Somiya, Isao
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • Nonylphenol polyetoxylates (NPnEOs) metabolites; nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenoxyacetic acid (NPEC) (collectively referred to "NPE-c") were examined for their degradations by using of lab-scale UV/photocatalytic silicagel (ultraviolet photocatalytic degradation in the presence of silicagel coated with titanium dioxide as a catalyst) reactor. NPE-c degradations by UV/photocatalytic silicagel treatment reached approximately 85-93 % after 40 min irradiation independently of its initial concentration (between ca. 0.5 and 2.0mg/l). Any intermediates under the NPE-c degradation were not identified by GC/MS sample analysis. Degradations of NPE-c were followed pseudo first-order kinetics. Then, the effectiveness of UV/photocatalytic silicagel treatment for degradation of NPE-c was in the order of NPEC > NP > NP1EO.

  • PDF

A Photocatalytic Degradation of Bromate over Nanosized Titanium Dioxide Prepared by Reverse Micelle (역상마이셀에 의한 나노크기 이산화티탄의 제조 및 브로메이트 광분해 특성)

  • 이만식;홍성수;박홍재;정영언;박원우
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.987-992
    • /
    • 2002
  • Nanosized titania sol has been produced by the controlled hydrolysis of titanium tetraisopropoxide(TTIP) in sodium bis(2-ethylhexyl)sulfosuccinate(AOT) reverse micelles. The physical properties, such as crystallite size and crystallinity according to R ratio have been investigated by FT-IR, XRD and UV-DRS. In addition, the photocatalytic degradation of bromate has been studied by using batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. It is shown that the anatase structure appears in the 300~$600^{\circ}C$ calcination temperature range and the formation of anatase into rutile starts above $700^{\circ}C$. The crystallite size increases with increasing R ratio. In the photocatalytic degradation of bromate, the photocatalytic decomposition of bromate shows the decomposition rate increases with decreasing initial concentration of bromate and with increasing intensity of light.