• Title/Summary/Keyword: Photocatalyst$TiO_2$

Search Result 462, Processing Time 0.035 seconds

Properties of $TiO_2$ thin film coated on $SnO_2$ thin films by sol-gel method (Sol-gel 법에 의해 $SnO_2$계 박막위에 코팅된 $TiO_2$ 박막의 특성)

  • Lim, Tae-Young;Cho, Hye-Mi;Kim, Jin-Ho;Hwang, Jong-Hee;Hwang, Hae-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.256-261
    • /
    • 2009
  • Hydrophilic and transparent $TiO_2$ thin film was fabricated by sol-gel method and the properties of contact angle, surface morphology, and transmittance were measured. In addition, surfactant Tween 80 was used for increasing the hydrophilic property of thin film. When the contents of Tween 80 in $TiO_2$ solution was 0, 10, 30, 50wt%, the contact angles of $TiO_2$ thin film were $41.4^{\circ}$, $18.2^{\circ}$, $16.0^{\circ}$, $13.2^{\circ}$, respectively. Fabricated $TiO_2$ thin film showed the photocatalytic property that decomposed methylene blue and decreased the absorbance of solution after UV irradiation. $TiO_2$ thin films fabricated with the solution of 30 wt% Tween 80 were deposited on glass (bare), antimony tin oxide (ATO), fluorine tin oxide (FTO), indium tin oxide (ITO) coated glass substrates, and the contact angle and transmittance of thin film was measured. The contact angles of thin films deposited on four substrates were $16.2\sim27.1^{\circ}$ and was decreased to the range of $13.2\sim17.6^{\circ}$ after UV irradiation, Especially, the thin films coated on ATO and FTO glass substrate showed high transmittance of 74.6% in visible range, respectively, and low transmittance of 54.2% and 40.4% in infrared range, respectively.

Photo-catalytic Degradation on B-, C-, N-, and F Element co-doped TiO2 under Visible-light Irradiation (B, C, N, F 원소 다중도핑된 TiO2의 가시광 광촉매 분해 반응)

  • Bai, Byong Chol;Im, Ji Sun;Kim, Jong Gu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • In this study, boron, carbon, nitrogen and fluorine co-doped $TiO_{2}$ photocatalysts using tetraethylammonium tetrafluoroborate (TEATFB) have been prepared by different heat treatment temperatures to decrease the band gap. To explore the visible light photocatalytic activity of the novel low‐zband gap $TiO_{2}$ photocatalyst, the removal of two dyes was investigated, namely, acridine orange and rhodamine B. XRD patterns demonstrate that the samples calcined at temperatures up to $800^{\circ}C$ clearly show anatase peaks. The XPS results show that all the doped samples contain N, C, B and F elements and the doped $TiO_{2}$ shows the shift in the band gap transition down to 2.98 eV as UV-DRS results. In these UV-Vis results, photocatalytic activity of the doped $TiO_{2}$ is 1.61 times better than undoped $TiO_{2}$. Specially, excellent photoactivity results were obtained in the case of samples treated at $700^{\circ}C$.

Application of a Microbial Toxicity Assay for Monitoring Treatment Efficiency of Pentachlorophenol in Water using UV Photolysis and $TiO_2$ Photocatalysis

  • Kim, Jung-Kon;Cho, Il-Hyung;Zoh, Kyung-Duk;Choi, Kyung-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.146-150
    • /
    • 2004
  • Degradation efficiency of pentachlorophenol (PCP) by using direct UV photolysis and $TiO_2$ photocatalysis was evaluated with both chemical analyses and acute toxicity assessment employing luminescent bacteria Vibrio fischeri. PCP was chosen as a target compound in this study because of its wide application as fungicide, bactericide, insecticide and wood preservative in agriculture and many industries, in addition to its well-known environmental consequences. The acute toxicity to the microbe was reduced by >60% when applying UV alone, and was completely removed when treated with $UV-TiO_2$ combinations. Toxicity reduction pattern determined with the Microtox Assay generally corresponds with the chemistry data: However, it should be noted that toxicity was greater than expected by the chemistry data. Formation of TCBQ, a toxic byprodut, could not explain observed microbial toxicity. These observations are probably due to the presence of unidentified toxic PCP byproducts, which may include polychlorinated dibenzodioxins and polychlorinated dibenzofurans. When Microtox results were compared between different exposure time, i.e.,5 min and 15 min, an interesting pattern was noted with $UVA-\;TiO_2$ treatment. While no microbial toxicity was observed with 5 min exposure, an EC50 value of 45.4% was estimated with 15 min exposure, which was not observed in $UVB-\;TiO_2$ exposure. This result may suggest the presence of unidentified toxic degradation products generated in the later stage of treatment. Based on this study, $TiO_2$ photocatalyst, together with UVB photolysis could improve the removal of both PCP and its toxic derivatives in more efficient way. The Microtox Assay is promising and economical method for monitoring efficiency of wastewater treatment processes.

  • PDF

Solar Detoxification of Trichloroethylene in Waste Water with Slurry Batchtype Photoreactor (Slurry batch형 광화학 반응기를 이용한 폐수 내의 Trichlroethylene의 분해)

  • Lee, Tai-K.;Kim, Dong-H.;Cho, Sug-H.;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.10-20
    • /
    • 1992
  • In this experiment, photochemical reaction has been applied to destroy TCE in water phase. The main target of this work is to investigate the technical feasibility of large scale of solar detoxification reactor for water treatment. The results have revealed that solar detoxification utilizing photon energy from the sun is the most attractive process to decompose organic toxins in water phase at room temperature. The detailed results from this work are as follows; (1) The highest conversion ratio of TCE was obtained by using $TiO_2$, annatase as a photocatalyst among $TiO_2$ anatase, $TiO_2$ rutile and $V_2O_5$ under the same experimental condition. The anatase crystal structure was confirmed with XRD analysis, and its surface area was 7.748 $m^2/g$ from the BET-$N_2$ measurement (2) 0.1 wt% of $TiO_2$ anatase has been adopted as optimal quantity for batch slurry reactor at this experimental conditions. (3) The effect of hydrogen peroxide on the conversion of TCE was investigated. Its optimal quantity was 0.06 vol. % under this experimental conditions. (4) The effect of oxygen on the conversion of TCE also was studied by controlling the head space in photoreactor. Results indicated that sufficient amount of oxygen should be supplied to accomplish the highest conversion rate of TCE in water phase.

  • PDF

Properties of TiO2 thin films fabricated with surfactant by a sol-gel method (Sol-gel 법에 의하여 제조된 계면활성제 첨가 TiO2 박막 특성)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Cho, Yong-Seok;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.267-271
    • /
    • 2010
  • Super hydrophilic and high transparent $TiO_2$ thin films were successfully fabricated by sol-gel method without an irradiation of UV light. In addition, surfactant Tween 80 was used for increasing the transmittance of the thin films. When the contents of Tween 80 in $TiO_2$ solution were 0.0, 1.0, 3.0, 5.0 wt%, the transmittance of $TiO_2$ thin films was ca. 74.31%, 74.25%, 79.69%, 81.99% at 550 nm wavelength, respectively. The contact angles of fabricated $TiO_2$ thin films with or without Tween 80 were from ca. $4.0^{\circ}$ to $4.5^{\circ}$. The $TiO_2$ thin films annealed over $400^{\circ}C$ showed anatase crystal structure and the photocatalytic property that decomposed methyl orange with UV irradiation. The surface morphologies, optical properties and contact angle of prepared thin films with different contents of Tween 80 were evaluated by field emission scanning electron microscope (FE-SEM), X-ray diffratometer (XRD), UV-Vis spectrophotometer and contact angle meter.

Application of Photocatalytic Degradation for Efficient Treatment of Organic Matter in Landfill Leachate in Jeju Island (제주도 매립장 침출수 중 유기물의 효율적 처리를 위한 광촉매 분해 반응의 응용)

  • Lee, Chang-Han;Lee, Taek-Kwan;Cho, Eun-Il;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.677-689
    • /
    • 2022
  • In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3·6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3·6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.

Destruction of Volatile Organic Compounds Using Photocatalyst-Coated Construction Materials (건축자재의 산화티타늄 코팅을 통한 휘발성 유기화합물 분해)

  • Jo Wan-Kuen;Chun Hee-Dong
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.785-792
    • /
    • 2005
  • In order to reduce roadside and indoor air pollution for volatile organic compounds VOC), it may be necessary to apply photocatalyst-coated construction materials. This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of VOC present in roadside or indoor air. The photocatalytic removal of five target VOC was investigated: benzene, toluene, ethyl benzene and o,m,p-xylenes. Variables tested for the current study included ultraviolet(UV) light intensity coating materials, relative humidity (RH), and input concentrations. Prior to performing the parameter tests, adsorption of VOC onto the current experiment was surveyed, and no adsorption was observed. Stronger UV intensity provided higher photocatalytic destruction(PCD) efficiency of the target compounds. For higher humidity, higher PCD efficiency was observed. The PCD efficiency depended on coating material. Contrary to certain previous findings, lower PCD efficiencies were observed for the experimental condition of higher input concentrations. The current findings suggested that the four parameters tested in the present study should be considered for the application of photocatalyst-coated construction materials in cleaning VOC of roadside or indoor air.

Oxygen-deficient Reduced TiO2-X: Surface Properties and Photocatalytic Activity

  • Sinhamahapatra, Apurba;Jeon, Jong-Pil;Yu, Jong-Sung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.59-75
    • /
    • 2016
  • Reduced or black $TiO_{2-x}$ materials with oxygen-deficiency have been achieved by creating oxygen vacancies and/or defects at the surface using different methods. Fascinatingly, they exhibited an extended absorption in VIS and IR instead of only UV light with bandgap decrease from 3.2 (anatase) to ~1 eV. However, despite the dramatic enhancement of optical absorption in black $TiO_{2-x}$ materials, they have failed to show expected visible light-assisted water splitting efficiency. This was ascribed to the high concentration of the surface defects and/or oxygen vacancies, considered as an electron donor to enhance donor density and improve the charge transportation in black $TiO_2$ can also act as charge recombination centers, which eventually decrease photocatalytic activity. Therefore, a black ot reducd $TiO_2$ material with optimized properties would be highly desired for visible light photocatalysis. In this report, a new controlled magnesiothermic reduction has been developed to synthesize reduced black $TiO_{2-x}$ in the presence $H_2/Ar$ for photocatalytic $H_2$ production from methanol-water system. The material possesses an optimum band gap and band position, oxygen vacancies, and surface defects and shows significantly improved optical absorption in the visible and infrared region. The synergistic effects enable the reduced $TiO_{2-x}$ material to show an excellent hydrogen production ability along with long-term stability under the full solar wavelength range of light and visible light, respectively, in the methanol-water system in the presence of Pt as a co-catalyst. These values are superior to those of previously reported black $TiO_2$ materials. On the basis of all the results, it can be realized that the outstanding activity and stability of the reduced of $TiO_{2-x}$ NPs suggest that a balanced combination of different factors like $Ti^{3+}$, surface defects, oxygen vacancy, and recombination center is achieved along with optimized bandgap and band position during the preparation employing magnesiothermic reduction in the presence of $H_2$. The controlled magnesiothermic reduction in the presence of $H_2$ is one of the best alternative ways to produce active and stable $TiO_2-based$ photocatalyst for $H_2$ production.

  • PDF

Synthesis and Optical Property of a TiOF2 Powder via an Ultrasonic Spray Pyrolysis Process (초음파 분무 열분해 공정을 이용한 TiOF2 분말의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.307-310
    • /
    • 2016
  • $TiOF_2$, which has remarkable electrochemical and optical properties, is used in various applications such as Li-ion batteries, electrochemical displays, and photocatalysts. In addition, it is possible to utilize the template which is allowed to synthesize fluorine doped $TiO_2$ powders with hollow or faceted structures. However, common synthesis methods of $TiOF_2$ powders have some disadvantages such as the use of expensive and harmful precursors and batchtype processes with a limited production scale. In this study, we report a synthetic route for preparing $TiOF_2$ powders by using an inexpensive and harmless precursor and a continuous ultrasonic spray pyrolysis process under a controlled atmosphere to address the aforementioned problems. The synthesized powder has an average size of $1{\mu}m$, a spherical shape, a pure $TiOF_2$ phase, and exhibits a band-gap energy of 3.2 eV.

Microfluidic Assisted Synthesis of Ag-ZnO Nanocomposites for Enhanced Photocatalytic Activity (광촉매 성능 강화를 위한 미세유체공정 기반 Ag-ZnO 나노복합체 합성)

  • Ko, Jae-Rak;Jun, Ho Young;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, there has been increasing demand for advancing photocatalytic techniques that are capable of the efficient removal of organic pollutants in water. TiO2, a representative photocatalytic material, has been commonly used as an effective photocatalyst, but it is rather expensive and an alternative is required that will fulfill the requirements of both high performing photocatalytic activities and cost-effectiveness. In this work, ZnO, which is more cost effective than TiO2, was synthesized by using a microreactor-assisted nanomaterials (MAN) process. The process enabled a continuous production of ZnO nanoparticles (NPs) with a flower-like structure with high uniformity. In order to resolve the limited light absorption of ZnO arising from its large band gap, Ag NPs were uniformly decorated on the flower-like ZnO surface by using the MAN process. The plasmonic effect of Ag NPs led to a broadening of the absorption range toward visible wavelengths. Ag NPs also helped inhibit the electron-hole recombination by drawing electrons generated from the light absorption of the flower-like ZnO NPs. As a result, the Ag-ZnO nanocomposites showed improved photocatalytic activities compared with the flower-like ZnO NPs. The photocatalytic activities were evaluated through the degradation of methylene blue (MB) solution. Scanning electron microscopy (SEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS) confirmed the successful synthesis of Ag-ZnO nanocomposites with high uniformity. Ag-ZnO nanocomposites synthesized via the MAN process offer the potential for cost-effective and scalable production of next-generation photocatalytic materials.