• Title/Summary/Keyword: Photo-sensitive fiber

Search Result 8, Processing Time 0.021 seconds

Gamma-radiation Effects on Fiber Bragg Gratings Written in Photo-sensitive and Commercial Single-mode Optical Fibers (광민감 광섬유와 일반 단일모드 광섬유로 제작한 브래그 격자 센서의 감마방사선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu;Im, Don-Sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.701-704
    • /
    • 2014
  • In this study, we studied the effect of $Co^{60}$ gamma-radiation on the FBGs written in photo-sensitive and commercial Ge-doped single-mode optical fibers. The FBGs were exposed to gamma-radiation up to a dose of 17.8 kGy at the dose rate of 300 Gy/min. According to the experimental data and analysis results, the lowest Bragg wavelength shift (18 pm) was obtained by a grating written in photosensitive fiber without $H_2$-loading.

  • PDF

Radiation Effects on Fiber Bragg Grating Sensors Written in UV KrF Laser Process Condition (UV KrF 레이저 공정조건에 따른 FBG 센서의 방사선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.161-166
    • /
    • 2016
  • We studied the effect of $Co^{60}$ gamma-radiation on the FBGs by a variation of grating the fabrication parameters. The FBGs were fabricated in a different UV KrF laser intensity using the same boron co-doped photo-sensitive fiber and exposed to gamma-radiation up to a dose of 33.8 kGy. According to the experimental data and analysis results, We confirmed that the laser intensity for grating inscription has a highly effect on the radiation sensitivity of the FBGs and the radiation-induced Bragg wavelength shift by the change of laser process condition showed a difference more than about 30 %.

The Study of Radiation Sensitivity on Fiber Bragg Grating Written in Photo-sensitive Optical Fibers (광민감 광섬유로 제작한 광섬유 브래그 격자 센서의 방사선 민감도에 대한 연구)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2023-2028
    • /
    • 2014
  • In this study, we studied the effect of $Co^{60}$ gamma-radiation on the FBGs written in photo-sensitive and commercial Ge-doped single-mode optical fibers. The FBGs were exposed to gamma-radiation up to a dose of 17.8 kGy at the dose rate of 300 Gy/min. According to the experimental data and analysis results, the lowest Bragg wavelength shift (18 pm) was obtained by a grating written in photosensitive fiber without $H_2$-loading. Also, we confirmed that the H2 loading process has considerably more influence on the Bragg wavelength shift change under gamma radiation than $GeO_2$ contents in the fiber core.

Improvement of Photo-stability for p-Aramid Fibers by SiO2/TiO2 Sol-Gel Method (SiO2/TiO2 sol-gel법을 이용한 p-아라미드 섬유의 내광성 증진)

  • Lee, Young-Il;Jung, Min-Hyuck;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • Aramid fibers are being used increasingly in a wide range of application due to low density, high specific strength, high modulus, and high thermal resistance. But owing to its special physical and chemical structures, it is sensitive to absorb the ultraviolet light which will degrade the fiber's useful mechanical properties and structure. In this paper, the sol-gel technique was used to improve the photo-stability of p-aramid fibers. $TiO_2$, modified $SiO_2$/$TiO_2$ sol were used as coating solutions. The influence of the such coatings on the photo-stability of p-aramid fiber was investigated by an accelerated photo-ageing method using xenon lamp. The photo-stability of p-aramid fiber showed obvious improvement after the modified silica binding coating. But the amorphous $TiO_2$ sol coatings showed a negative effect. After 144h light exposure, the modified silane binder-coated fibers showed less degradation in mechanical properties with the retained tensile strength greater than about 70% of the original value.

Multiplexed Hard-Polymer-Clad Fiber Temperature Sensor Using An Optical Time-Domain Reflectometer

  • Lee, Jung-Ryul;Kim, Hyeng-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Optical fiber temperature sensing systems have incomparable advantages over traditional electrical-cable-based monitoring systems. However, the fiber optic interrogators and sensors have often been rejected as a temperature monitoring technology in real-world industrial applications because of high cost and over-specification. This study proposes a multiplexed fiber optic temperature monitoring sensor system using an economical Optical Time-Domain Reflectometer (OTDR) and Hard-Polymer-Clad Fiber (HPCF). HPCF is a special optical fiber in which a hard polymer cladding made of fluoroacrylate acts as a protective coating for an inner silica core. An OTDR is an optical loss measurement system that provides optical loss and event distance measurement in real time. A temperature sensor array with the five sensor nodes at 10-m interval was economically and quickly made by locally stripping HPCF clad through photo-thermal and photo-chemical processes using a continuous/pulse hybrid-mode laser. The exposed cores created backscattering signals in the OTDR attenuation trace. It was demonstrated that the backscattering peaks were independently sensitive to temperature variation. Since the 1.5-mm-long exposed core showed a 5-m-wide backscattering peak, the OTDR with a spatial resolution of 40 mm allows for making a sensor node at every 5 m for independent multiplexing. The performance of the sensor node included an operating range of up to $120^{\circ}C$, a resolution of $0.59^{\circ}C$, and a temperature sensitivity of $-0.00967dB/^{\circ}C$. Temperature monitoring errors in the environment tests stood at $0.76^{\circ}C$ and $0.36^{\circ}C$ under the temperature variation of the unstrapped fiber region and the vibration of the sensor node. The small sensitivities to the environment and the economic feasibility of the highly multiplexed HPCF temperature monitoring sensor system will be important advantages for use as system-integrated temperature sensors.

The Scattering Beam Measurement of the RBC and the Fabrication of the Micro Cell Biochip (적혈구의 산란빔 측정과 마이크로 세포 분석 바이오칩 제작)

  • Byun, In Soo;Kwon, Ki Jin;Lee, Joon Ha
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • Next future, The bio technology will be a rapidly developing. This paper is the scattering beam measurement of the red blood cell (RBC) and the fabrication of the micro cell biochip using the bio micro electro mechanical system (Bio-MEMS) process technology. The Major process method of Bio-MEMS technology was used the buffered oxide etchant (BOE), electro chemical discharge (ECD) and ultraviolet sensitive adhesives (UVSA). All experiments were the 10 times according to the process conditions. The experiment and research are required the ultraviolet expose, the micro fluid current, the cell control and the measurement of the output voltage Vpp (peak to peak) waveform by scattering angles. The transmitting and receiving of the laser beam was used the single mode optical fiber. The principles of the optical properties are as follows. The red blood cells were injected into the micro channel. The single mode optical fiber was inserting in the guide channel. The He-Ne laser beam was focusing in the single mode optical fiber. The transmission He-Ne laser beam is irradiating to the red blood cells. The manufactured guide channel consists of the four inputs and the four outputs. The red blood cell was allowed with the cylinder pump. The output voltage Vpp waveform of the scattering beam was measured with a photo detector. The receiving angle of the output optical fiber is $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The magnitude of the output voltage Vpp waveform was measured in the decrease according to increase of the reception angles. The difference of the output voltage Vpp waveform is due differences of the light transmittance of the red blood cells.

High Quality Transient Voltage Measuring Device Using Optical Technique (광기법을 이용한 고정도 과도전압측정기)

  • Lee, Bok-Hee;Kil, Gyung-Suk;Jeon, Duk-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.441-443
    • /
    • 1995
  • A new optical-resistive voltage divider, which consists of light emitting diode, optic fiber, PIN-photo diode and a high qualify shielding resistive divider, whose total response time is 7.35 [ns], has been obtained. The optical to electrical signal converter was constructed with GaAsP series light emitting diode. The response characteristics have been verified by applying the Marx impulse voltage generator experimentally. Comparing with the performance of conventional resistive voltage divider, the characteristics of the proposed optical-resistive voltage divider are more excellent in step response and less sensitive to electromagnetic interference.

  • PDF

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.