DOI QR코드

DOI QR Code

Radiation Effects on Fiber Bragg Grating Sensors Written in UV KrF Laser Process Condition

UV KrF 레이저 공정조건에 따른 FBG 센서의 방사선 영향

  • Kim, Jong-Yeol (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Nam-Ho (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jung, Hyun-Kyu (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2015.11.06
  • Accepted : 2015.12.14
  • Published : 2016.01.31

Abstract

We studied the effect of $Co^{60}$ gamma-radiation on the FBGs by a variation of grating the fabrication parameters. The FBGs were fabricated in a different UV KrF laser intensity using the same boron co-doped photo-sensitive fiber and exposed to gamma-radiation up to a dose of 33.8 kGy. According to the experimental data and analysis results, We confirmed that the laser intensity for grating inscription has a highly effect on the radiation sensitivity of the FBGs and the radiation-induced Bragg wavelength shift by the change of laser process condition showed a difference more than about 30 %.

본 논문에서는 광섬유 브래그 격자의 공정조건 변화에 따른 $Co^{60}$ 감마방사선 영향을 연구하였다. 광섬유 브래그 격자는 붕소가 첨가된 광민감 광섬유를 이용하여 UV KrF 레이저 세기를 달리하여 제작하였으며, 제작된 광섬유 브래그 격자 센서에 총 선량 33.8 kGy 감마선을 조사하였다. 실험결과를 통하여, 격자 공정을 위한 UV 레이저 세기가 광섬유 브래그 격자의 방사선 민감도에 큰 영향을 줄 수 있다는 것을 확인하였으며, 레이저 공정조건 변화에 따른 방사선에 의한 광섬유 브래그 파장의 변화는 30 % 이상의 차이를 보였다.

Keywords

References

  1. A. I. Gusarov, D. B. Doyle, N. K. Karafolas, F. Berghmans, "Fibers-Bragg gratings as a candidate technology for satellite communication payloads: radiation effects issues," Conference on Photonics for Space Environments VII, SPIE Proceedings, vol. 4134, pp. 253-260, 2000.
  2. A. Gusarov, D. Starodubov, F. Berghmans, O. Deparis, Y. Defosse, A. F. Fernandez,d, M. Decreton, P. Megret, M. Blondel, "Comparative study of the MGy dose level $\gamma$ -radiation effect on FBGs written in different fibres," in Proc. Int. Conf. Optical Fibre Sensors 1999 (OFS 13), Kyongju, Korea, pp. 608-611.
  3. A. Gusarov, S. Vasiliev, O. Medvedkov, I. Mckenzie and F. Berghmans et. al., "Stabilization of fiber Bragg gratings against gamma radiation," IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp 2205-2212, Aug. 2008. https://doi.org/10.1109/TNS.2008.2001038
  4. H. Henschel, S. K. Hoffgen, K. Krebber, J. Kuhnhenn and U. Weinand, "Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings," IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2235-2242, Aug. 2008. https://doi.org/10.1109/TNS.2008.2001039
  5. H. Henschel, D. Grobnic, S. K. Hoeffgen, et. al., "Development of highly radiation resistant fiber Bragg gratings," IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103-2110, Aug. 2011. https://doi.org/10.1109/TNS.2011.2160204
  6. A. Gusarov, B. Brichard, and D. N. Nikogosyan, "Gammaradiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers," IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp 2024-2028, Aug. 2010. https://doi.org/10.1109/TNS.2009.2039494
  7. IEC, "Optical fibres-Guidance for nuclear radiation tests," IEC/TR 62283, pp. 27-28, 2010.
  8. J. Y. Kim, N. H. Lee, H. K. Jung, "The study of radiation sensitivity on fiber Bragg grating written in photo-sensitive optical fibers," JKIICE, vol. 18 no. 8, Aug. 2014.
  9. TIA/EIA Std. 455-64, Procedure for measuring radiationinduced attenuation in optical fibers and optical cables, TIA, 1998.
  10. K. Krebber, H. Henschel, U. Weinand, "Fiber Bragg gratings as high dose radiation sensors?," Meas. Sci. Technol., vol. 17, pp. 1095-1102, Apr. 2006. https://doi.org/10.1088/0957-0233/17/5/S26

Cited by

  1. Radiation Effects on Fiber Bragg Grating Sensors by Irradiation Conditions of UV Laser vol.20, pp.12, 2016, https://doi.org/10.6109/jkiice.2016.20.12.2310