• Title/Summary/Keyword: Photo-polymerization

Search Result 98, Processing Time 0.028 seconds

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Methyl Methacrylate (메틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성)

  • 주영배;이내우;최재욱;강돈오;설수덕
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.68-75
    • /
    • 2001
  • Photopolymerization, the utilization of electromagnetic radiation(or light) as the energy source for polymerization of functional monomers, oligomers is the basis of important commercial processes with broad applicability, including photoimaging and RV curing of coatings and inks. The objective of this study is to investigate the characteristics of environmental fraternitive photopolymerization of methyl methacrylate(MMA). This work is the first step to continue further research about alkyl methacrylate. The experiment was done in aqueous solution under the influence of photo-initiator concentration(0.05-0.25mol/l), light intensity (5000-9000 ${\mu}J/cm^2$) and monomer concentration(2-6mol/l). Methyl methacrylate was polymerized to high conversion ratio using hydrogen peroxide($H_2O_2$) and the kinetics model we have obtained is as follows. $R_p=k_p[S]^{0.41}[M]^{0.62}[L]^{2.45} exp(53.64/RT$). The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it res 45.4Kca1/mol.

  • PDF

An enhancement in wear property of UHMWPE used in joint prosthesis (인공관절에 사용되는 UHMWPE의 내마모성 향상에 관한 연구)

  • Kim, K.T.;Lee, C.W.;Choi, J.B.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.3-6
    • /
    • 1996
  • The Ultra-high molecular weight polyethylene (UHMWPE) is exclusivity used as the articulation component with metal or ceramic materials in artificial joint prosthesis because of its good mechanical properties. In the long term however, wear of UHMWPE causes complex problems and hence causes loosening of He prosthesis. In this study, we tried to enhance the wear property of UHMWPE by attaching a hydrophilic graft on the UHMWPE surface and by improving surface hardness without deteriorating the mechanical properties of UHMWPE. This was achieved by ion implantation and by ${\gamma}$-irradiation to the surface in acrylic acid solution and by photo-polymerization in divinylbenzen (DVB), diallysophthalate (DAIP) solution. The wear test was performed by a wear testing machine of ball-on-disk type devised by the authors. The UHMWPE with hydrophlic surface and increased surface hardness developed by above treatments showed less volumetric wear.

  • PDF

Olefin Metathesis Curing Reaction of Essential Oils in Korean Dendropanax Lacquer (Olefin Metathesis를 이용한 황칠 Essential Oil의 경화 반응에 관한 연구)

  • Kim, Mi Ri;Lee, Won Hwi;Yoo, Hye Jin;Kim, Jong Sang;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.146-151
    • /
    • 2015
  • Raw sap of essential oil in Korean Dendropanax lacquer was extracted with ethanol, and which was cured by using ROMP (ring opening metathesis polymerization, one of olefin metathesis). Curing behavior with subsequent film properties were studied and compared with conventional curing (under ambient conditions) and UV photo curing. The compositional changes of major ingredients in the lacquer before and after curing were studied by using GC-MS (gas chromatography mass spectrometry). ROMP-cured coating film showed higher gel contents (40%) as compared to those of conventional (8%) and UV curing (25%). ROMP curing with 2 wt% Grubbs' catalyst at $100^{\circ}C$ completed curing reaction within 2 h, which was much faster than that of conventional curing. The quality of coating film prepared with ROMP was more homogeneous and wrinkle-free as compared with that with UV curing. It was found that major ingredients of sesquiterpenes, such as ${\alpha}$-selinene, ${\beta}$-selinene, and ${\delta}$-cadinene were reacted in ROMP, as well as polyacetylenes.

Preparation of Solventless UV Curable Thermally Conductive Pressure Sensitive Adhesives and Their Adhesion Performance

  • Baek, Seung-Suk;Park, Jinhwan;Jang, Su-Hee;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2017
  • Using various compositions of thermally conductive inorganic fillers with boron nitride (BN) and aluminum oxide ($Al_2O_3$), solventless UV-curable thermally conductive acrylic pressure sensitive adhesives (PSAs) were prepared. The base of the PSAs consists of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and isobornyl acrylate.The compositions of the thermally conductive inorganic fillers were 10, 15, 20, and 25 phr in case of BN, and 20:0, 15:5, 10:10, 5:15, and 0:20 phr in case of $BN/Al_2O_3$. The adhesion properties like peel strength, shear strength, and probe tack, and the thermal conductivity of the prepared PSAs were investigated with different thermally conductive inorganic filler contents. There were no significant changes in photo-polymerization behavior with increasing BN or $BN/Al_2O_3$ content. Meanwhile, the conversion rate and transmittance of the PSAs decreased and their thermal stabilities increased with increasing BN content. Their adhesion properties were also independent of the BN or $BN/Al_2O_3$ content. The dispersibility of BN in the acrylic PSAs was better than that of $Al_2O_3$ and it ranked the thermal conductivity in the following order: BN > $BN/Al_2O_3$ > $Al_2O_3$.

Control of Plasma Characteristic to Suppress Production of HSRS in SiH4/H2 Discharge for Growth of a-Si: H Using Global and PIC-MCC Simulation

  • Won, Im-Hui;Gwon, Hyeong-Cheol;Hong, Yong-Jun;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.312-312
    • /
    • 2011
  • In SiH4/H2 discharge for growth process of hydrogenated amorphous silicon (a-Si:H), silane polymers, produced by SiH2 + Sin-1H2n ${\rightarrow}$ SinH2n+2, have no reactivity on the film-growing surface. However, under the SiH2 rich condition, high silane reactive species (HSRS) can be produced by electron collision to silane polymers. HSRS, having relatively strong reactivity on the surface, can react with dangling bond and form Si-H2 networks which have a close correlation with photo-induced degradation of a-Si:H thin film solar cell [1]. To find contributions of suggested several external plasma conditions (pressure, frequency and ratio of mixture gas) [2,3] to suppressing productions of HSRS, some plasma characteristics are studied by numerical methods. For this study, a zero-dimensional global model for SiH4/H2 discharge and a one-dimensional particle-in-cell Monte-Carlo-collision model (PIC-MCC) for pure SiH4 discharge have been developed. Densities of important reactive species of SiH4/H2 discharge are observed by means of the global model, dealing 30 species and 136 reactions, and electron energy probability functions (EEPFs) of pure SiH4 discharge are obtained from the PIC-MCC model, containing 5 charged species and 15 reactions. Using global model, SiH2/SiH3 values were calculated when pressure and driving frequency vary from 0.1 Torr to 10 Torr, from 13.56 MHz to 60 MHz respectively and when the portion of hydrogen changes. Due to the limitation of global model, frequency effects can be explained by PIC-MCC model. Through PIC-MCC model for pure SiH4, EEPFs are obtained in the specific range responsible for forming SiH2 and SiH3: from 8.75 eV to 9.47 eV [4]. Through densities of reactive species and EEPFs, polymerization reactions and production of HSRS are discussed.

  • PDF

Adhesion Behavior of Graphene Oxide on Spherical Polymer Particles (그래핀 산화물-구형 고분자 입자 사이의 흡착 거동)

  • Kim, Sinwoo;Lee, Sang-Soo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.162-166
    • /
    • 2013
  • Graphene-coated polymer particles have attracted research interests due to their emerging applications derived from their controlled structure and morphology. To control the properties of graphene oxide (GO)-polystyrene (PS) composite particles, the adsorption time and instantaneous adsorption conditions were investigated by varying their mixing method. Polystyrene particles prepared by emulsion polymerization were modified to have positive surface charge by adsorption of polyethylene imine (PEI) on the surface of PS particles. GO prepared by the chemical exfoliation method had negative surface charge from the oxygenated groups. The adsorption of the negatively charged GOs onto the positively charged PS particles was successfully completed, and it was found that a longer adsorption time and a greater difference in the instantaneous relative concentration led PS-GO particles to have more homogeneously coated surfaces without aggregation.

Effect of Acrylic Acid Contents and Inorganic Fillers on Physical Properties of Acrylic Pressure Sensitive Adhesive Tape by UV Curing (아크릴산 함량 및 무기물 충전제가 UV 경화형 아크릴 점착테이프의 물성에 미치는 영향)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Acrylic pressure sensitive adhesive (PSA) tapes were used for the automotive, the electrical and the electronic industries and the display module junction. In this study, the manufacture of high-strength structural tape used 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC), and UV irradiation for photo-polymerization, and the semi-structural properties of acrylic PSA tape with the AAC content and inorganic filler $SiO_2$ content were investigated. The initial adhesion strength was lowered by the rigidity of molecule chains due to the use of AAC, and the adhesion strength increased with increasing wetting time. The wetability, contact angle, and SEM images of PSA tapes with various contents of AAC were determined. Without filler, the peel strength and dynamic shear strength of PSA tape showed inverse correlation but the peel strength and dynamic shear strength increased with increasing filler content. From these correlations the PSA tapes could be optimized for the applications requiring high performance.

Loading Behavior of pH-Responsive P(MAA-co-EGMA) Hydrogel Microparticles for Intelligent Drug Delivery Applications (지능형 약물전달시스템을 위한 pH 감응형 P(MAA-co-EGMA) 수화젤 미세입자의 탑재거동)

  • Shin, Young-Chan;Kim, Kyu-Sik;Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.421-426
    • /
    • 2008
  • pH-responsive P(MAA-co-EGMA) hydrogel microparticles were synthesized via dispersion photo polymerization and the feasibility of the particles as the cosmetic formulation was investigated. Rh-B and the functional materials for the cosmetic application such as ascorbic acid, adenosine, EGCG, and arbutin were loaded in the P (MAA-co-EGMA) hydrogel microparticles in order to examine the interaction between the hydrogel and the loaded materials. In the loading experiments, Rh-B showed the highest loading efficiency to the P(MAA-co-EGMA) hydrogels due to the electrostatic attraction between the negative charge of the hydrogels and the positive charge of Rh-B at the ionized states. However, the functional materials showed relatively low loading efficiencies because of the electrostatic repulsions between the negative charges of both the hydrogels and the materials at the ionized states. In addition, P(MAA-co-EGMA) hydrogel microparticles showed pH-responsive release behavior of Rh-B according to the external pH changes.

Gas Permeation Properties of $CO_2$ Through Poly(ethylene Glycol) Diacrylate/Poly(Propylene Glycol) Diacrylate Membrane (Poly(ethylene glycol)diacrylate/poly(propylene glycol)diacrylate 막의 이산화탄소 기체 투과특성에 관한 연구)

  • Rhim Ji Won;Nam Sang Yong;Lee Sun Yong;Yun Tae Il
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.250-257
    • /
    • 2004
  • PEG(poly(ethylene glycol)) acrylate/PPG(poly(propylene glycol)) acrylate (PEG/PPG) was prepared using UV induced photopolymerization method to investigate gas permeation properties of the membrane. The effect of PPG content on the solubility, diffusivity, and permeability of $CO_2$, $O_2$, and $N_2$ in PEG/PPG membrane is reported at $25^{\circ}C$ and $35^{\circ}C$. PEG/PPG (9:1) membrane exhibits $CO_2$ permeability coefficient of 28.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 57.9 at $25^{\circ}C$. Permeability coefficient of increased with increasing with PPG content in the membrane. PEG/PPG (5:5) membrane shows $CO_2$ permeability coefficient of 78.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 33.2 at $25^{\circ}C$.