• 제목/요약/키워드: Photo Processing Chemical

검색결과 15건 처리시간 0.026초

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W.;Gao, W.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2010
  • This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.

복수 타입의 웨이퍼 혼류생산을 위한 클러스터 장비 로봇 운영 최적화 (Optimization for robot operations in cluster tools for concurrent manufacturing of multiple wafer types)

  • 유태선;이준호;고성길
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.49-55
    • /
    • 2023
  • Cluster tools are extensively employed in various wafer fabrication processes within the semiconductor manufacturing industry, including photo lithography, etching, and chemical vapor deposition. Contemporary fabrication facilities encounter customer orders with technical specifications that are similar yet slightly varied. Consequently, modern fabrications concurrently manufacture two or three different wafer types using a cluster tool to maximize chamber utilization and streamline the flow of wafer lots between different process stages. In this review, we introduce two methods of concurrent processing of multiple wafer types: 1) concurrent processing of multiple wafer types with different job flows, 2) concurrent processing of multiple wafer types with identical job flows. We describe relevant research trends and achievements and discuss future research directions.

사진현상폐수의 UV-자유반사 반응조에서의 UV/H2O2 고급산화처리 (UV/H2O2 Advanced Oxidation of Photo Processing Chemicals in a UV-free Reflecting Reactor)

  • 최경애;김영주
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.241-249
    • /
    • 2000
  • 난분해성 폐수인 사진현상폐수의 $UV/H_2O_2$$H_2O_2$의 고급산화에 의한 오염물질의 제거 실험을 실시하였다. $UV/H_2O_2$ 산화에서 $H_2O_2$의 분해로 $OH^-$ 라디칼이 발생되는데 파장 190~300 nm의 UV가 반응의 촉매 역할을 한다. $OH^-$ 라디칼은 수명은 짧으나 강력한 산화력을 갖고 있는데, 이 산화력은 폐수처리에서 폐수나 액상 폐기물의 유기물질을 제거하는데 이용된다. 본 연구에서 기존의 tube형 반응조의 단점을 보완한 UV-자유반사 반응조를 제작하여 사용하였으며 UV원으로는 수은 고압램프가 이용되었다. 본 실험에서는 반응시간과 $H_2O_2$ 주입량 및 pH 변화에 따른 오염물의 처리효율의 변화를 조사하였는데 $H_2O_2$의 주입량이 증가할수록 처리효율이 높았으나 그 차이는 미미하였으며, pH 8에서 보다는 3에서 처리효율이 약간 높았으나 그 차이 역시 크지 않았다. 본 연구에서 사진현상폐수 처리의 적정 운전조건은 pH 8, $H_2O_2$ 주입량은 유입수의 COD를 기준으로 한 1.3배 화학량론적 주입으로 나타났는데, 5시간의 처리에서 $COD_{Cr}$, TOC 및 색도의 제거효율은 각각 약 47.5%, 75.0% 및 91.5%로 나타났다. 반응 후 생분해성의 지표인 BOD/COD 비는 초기 0.04에서 0.21로 약 5.3배 증가하였다.

  • PDF

Development of photo-sensitive aluminum electrode materials in PDPs

  • Kim, Chul-Hong;Chae, So-Ra;Hwang, Yun-Tae;Kim, Min-Jae;Heo, Eun-Gi;Lee, Byung-Hak;Park, Yung-Jun;Chung, Chong-In;Kim, Dong-Jun;Cho, Jae-Hwi;Kim, Hyun-Don;Okamoto, Kuninori;Kweon, Tae-Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.269-271
    • /
    • 2009
  • We investigated on the sintering behaviors and electrical properties of photo-sensitive aluminum (Al) electrode materials in plasma display panels. General characteristics of Al electrodes was totally different to that of conventional Ag materials; resistivity was decreased with the increasing of metal particle sizes and the amount of frit content and there is almost no width difference between developed and fired electrodes layers. Microstructures of fired electrodes revealed that Al electrodes had different mechanism on necking between metal particles and making electrical conducting path. Chemical durability (especially, antialkalinity) and adhesion of Al electrodes must be carefully controlled. Nevertheless there are difficulties of processing Al electrodes, we developed and optimized photo-sensitive Al materials as address electrodes without any changes of existing patterning equipment and sintering conditions.

  • PDF

Enhancement of NOx photo-oxidation by Fe-doped TiO2 nanoparticles

  • Martinez-Oviedo, Adriana;Ray, Schindra Kumar;Gyawali, Gobinda;Rodriguez-Gonzalez, Vicente;Lee, Soo Wohn
    • Journal of Ceramic Processing Research
    • /
    • 제20권3호
    • /
    • pp.222-230
    • /
    • 2019
  • Microwave hydrothermal-assisted sol-gel method was employed to synthesize the Fe doped TiO2 photocatalyst. The morphological analysis suggests anatase phase nanoparticles of ~20 nm with an SBET area of 283.99 ㎡/g. The doping of Fe ions in TiO2 created oxygen vacancies and Ti3+ species as revealed through the XPS analysis. The reduction of the band gap (3.1 to 2.8 eV) is occurred by doping effect. The as-prepared photocatalyst was applied for removal of NOx under solar light irradiation. The doping of Fe in TiO2 facilitates 75 % of NOx oxidation efficiency which is more than two-fold enhancement than the TiO2 photocatalyst. The possible reason of enhancement is associated with high surface area, oxygen vacancy, and reduction of the band gap. Also, the low production of toxic intermediates, NO2 gas, is further confirmed by Combustion Ion Chromatography. The mechanism related NOx oxidation by the doped photocatalyst is explained in this study.

고도산화공정을 이용한 고농도 무전해 니켈도금 폐액 처리방안 연구 (A Study on the Highly Effective Treatment of Spent Electroless Nickel Plating Solution by an Advanced Oxidation Process)

  • 서민혜;조성수;이수영;김진호;강용호;엄성현
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.270-274
    • /
    • 2015
  • 본 연구에서는 고농도 무전해 니켈도금 폐액을 처리하기 위한 고도산화공정 기술을 개발하였다. 추출, 농축 공정을 이용한 니켈 금속 회수보다는 폐수를 방류수 수준으로 처리할 수 있는 기술 개발을 위하여 차아인산염과 아인산염을 침전이 용이한 인산염으로 효과적으로 전환시킬 수 있는 공정 개발에 초점을 맞추었다. 광화학적 방법인 $UV/H_2O_2$ 방식을 채택하여 COD, $PO_4-P$ 변화 효율 및 과산화수소의 소모량을 분석함으로써 고농도 무전해 니켈도금 폐액의 고도산화처리 특성을 평가하였다. 특히, $UV/H_2O_2/O_3$ 방식으로 오존산화법을 추가함으로써 과산화수소 사용량을 30% 가량 절감하고 처리시간을 약 6 h 단축시킬 수 있었다.

이미지 프로세싱 기반 철근콘크리트 구조물의 균열진단 로봇 개발에 관한 연구 (A Study on the Development of Crack Diagnosis Robot for Reinforced Concrete Structures Based on Image Processing)

  • 김한솔;장종민;김영관;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.103-104
    • /
    • 2022
  • Cracks may occur in reinforced concrete (RC) structures due to various physical and chemical factors, and the growth of cracks causes deterioration of the structure's performance. It is important to prevent the expansion of cracks through periodic diagnosis of cracks in structures. In order to enable free crack exploration even in a narrow space, a construction robot using a Mecanum wheel that can move up, down, left and right and rotate in place was designed. High-quality crack images were periodically collected through the camera, and the image fragments stored during the exploration were combined into a single photo after the exploration was completed. The robot detected cracks with a width of 0.2 mm or more on the concrete probe surface with an accuracy of about 90% or more.

  • PDF

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong;Bae, Dong-Sik
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.31-34
    • /
    • 2013
  • Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.

Study on Optical Characteristics of Nano Hollow Silica with TiO2 Shell Formation

  • Roh, Gi-Yeon;Sung, Hyeong-Seok;Lee, Yeong-Cheol;Lee, Seong-Eui
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.98-103
    • /
    • 2019
  • Optical filters to control light wavelength of displays or cameras are fabricated by multi-layer stacking process of low and high index thin films. The process of multi-layer stacking of thin films has received much attention as an optimal process for effective manufacturing in the optical filter industry. However, multi-layer processing has disadvantages of complicated thin film process, and difficulty of precise control of film morphology and material selection, all of which are critical for transmittance and coloring effect on filters. In this study, the composite $TiO_2$, which can be used to control of UV absorption, coated on nano hollow silica sol, was synthesized as a coating material for optical filters. Furthermore, systematic analysis of the process parameters during the chemical reaction, and of the structural properties of the coating solutions was performed using SEM, TEM, XRD and photo spectrometry. From the structural analysis, we found that the 85 nm nano hollow silica with 2.5 nm $TiO_2$ shell formation was successfully synthesized at proper pH control and titanium butoxide content. Photo luminescence characteristics, excited by UV irradiation, show that stable absorption of 350 nm-light, correlated with a 3.54 eV band gap, existed for the $TiO_2$ shell-nano hollow silica reacted with 8.8 mole titanium butoxide solution. Transmittance observed on substrate of the $TiO_2$ shell-nano hollow silica showed effective absorption of 200-300 nm UV light without deterioration of visible light transparency.