DOI QR코드

DOI QR Code

A Study on the Highly Effective Treatment of Spent Electroless Nickel Plating Solution by an Advanced Oxidation Process

고도산화공정을 이용한 고농도 무전해 니켈도금 폐액 처리방안 연구

  • Seo, Minhye (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Cho, Sungsu (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Lee, Sooyoung (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Kim, Jinho (Inchoen Chemical Co., LTD.) ;
  • Kang, Yong-Ho (Inchoen Chemical Co., LTD.) ;
  • Uhm, Sunghyun (Advanced Materials & Processing Center, Institute for Advanced Engineering)
  • 서민혜 (고등기술연구원 신소재공정센터) ;
  • 조성수 (고등기술연구원 신소재공정센터) ;
  • 이수영 (고등기술연구원 신소재공정센터) ;
  • 김진호 (인천화학(주)) ;
  • 강용호 (인천화학(주)) ;
  • 엄성현 (고등기술연구원 신소재공정센터)
  • Received : 2015.02.03
  • Accepted : 2015.03.12
  • Published : 2015.06.10

Abstract

We develop advanced oxidation processes for the treatment of spent electroless nickel plating solution. Apart form recovering nickel by leaching and enrichment, more emphasis is placed on rendering the waste water recyclable via oxidizing phosphite and hypophosphite into phosphate which can then be precipitated easily. $UV/H_2O_2$ process is employed and the conversion efficiency of COD and $PO_4-P$, and $H_2O_2$ consumption are analyzed. Furthermore, the $UV/H_2O_2/O_3$ process in conjunction with $O_3$ generator enables us to not only save the treatment time by 6 hours but also reduce $H_2O_2$ consumption by 30%.

본 연구에서는 고농도 무전해 니켈도금 폐액을 처리하기 위한 고도산화공정 기술을 개발하였다. 추출, 농축 공정을 이용한 니켈 금속 회수보다는 폐수를 방류수 수준으로 처리할 수 있는 기술 개발을 위하여 차아인산염과 아인산염을 침전이 용이한 인산염으로 효과적으로 전환시킬 수 있는 공정 개발에 초점을 맞추었다. 광화학적 방법인 $UV/H_2O_2$ 방식을 채택하여 COD, $PO_4-P$ 변화 효율 및 과산화수소의 소모량을 분석함으로써 고농도 무전해 니켈도금 폐액의 고도산화처리 특성을 평가하였다. 특히, $UV/H_2O_2/O_3$ 방식으로 오존산화법을 추가함으로써 과산화수소 사용량을 30% 가량 절감하고 처리시간을 약 6 h 단축시킬 수 있었다.

Keywords

References

  1. W. C. Ying, R. R. Bonk, and M. E. Tucker, Precipitation treatment of spent electroless nickel plating baths, J. Hazard. Mater., 18, 69-89 (1988). https://doi.org/10.1016/0304-3894(88)85059-3
  2. D. H. Cheng, W. Y. Xu, Z. Y. Zhang, and Z. H. Yiao, Electroless copper plating using hypophosphite as reducing agent, Met. Finish., 95, 34-37 (1997).
  3. H-Y. Lee, Recovery of nickel from electroless plating wastewater by electrolysis method, J. Kor. Inst. Resour. Recycl., 21, 41-46 (2012).
  4. L. E. de-Bashan and Y. Bashan, Recent advances in removing phosphorous from waste water and its future use as fertilizer (1997-2003), Water Res., 38, 4222-4246 (2004). https://doi.org/10.1016/j.watres.2004.07.014
  5. E. Neyens and J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98, 33-50 (2003). https://doi.org/10.1016/S0304-3894(02)00282-0
  6. A. D. Bokare and W. Choi, Review of iron-free fenton-like systems for activating $H_2O_2$ in advanced oxidation processes, J. Hazard. Mater., 275, 121-135 (2014). https://doi.org/10.1016/j.jhazmat.2014.04.054
  7. D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, Photocatalytic degradation for environmental applications, J. Chem. Technol. Biotechnol., 77, 102-116 (2002). https://doi.org/10.1002/jctb.532
  8. P. R. Gogate and A. B. Pandit, A review of imperative technologies for waste water treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8, 501-551 (2004). https://doi.org/10.1016/S1093-0191(03)00032-7
  9. C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons, I. Poulios, and D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83, 769-776 (2008). https://doi.org/10.1002/jctb.1873
  10. J. M. Poyatos, M. M. Munio, M. C. Almecija, J. C. Torres, E. Hontoria, and F. Osorio, Advanced oxidation processes for wastewater treatment: state of the art, Water Air Soil Pollut., 205, 187-204 (2010). https://doi.org/10.1007/s11270-009-0065-1
  11. J. Pawlat, H. D. Stryczewska, and K. Ebihara, Sterilization techniques for soil remediation and agriculture based on ozone and AOP, J. Adv. Oxid. Technol., 13, 138-145 (2010).
  12. F. A. Al Momani, Potential use of solar energy for waste activated sludge treatment, Int. J. Sust. Eng., 6, 82-91 (2013). https://doi.org/10.1080/19397038.2012.672480
  13. C. Domeno, A. Rodriguez-Lafuente, J. Martos, R. Bilbao, and C. Nerin, VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation and ozonization, Environ. Sci. Technol., 44, 2585-2591 (2010). https://doi.org/10.1021/es902735g
  14. R. Sapach and T. Viraraghavan, An introduction to the use of hydrogen peroxide and ultraviolet radiation: An advanced oxidation process, J. Environ. Sci. Health, A., 32, 2355-2366 (1997).
  15. S. Vilhunen, M. Vilve, M. Vepsalainen, and M. Sillanpaa, Removal of organic matter from a variety of water matrices by UV photolysis and UV/$H_2O_2$ method, J. Hazard. Mater., 179, 776-782 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.070
  16. P. Liu, C. Li, X. Liang, J. Xu, G. Lu, and F. Ji, Advanced oxidation of hypophosphite and phosphite using a UV/$H_2O_2$ process, Environ. Technol., 34, 2231-2239 (2013). https://doi.org/10.1080/09593330.2013.765917
  17. Y.-J. Shih, C.-P. Lin, and Y.-H. Huang, Application of fered-fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater, Sep. Purif. Technol., 104, 100-105 (2013). https://doi.org/10.1016/j.seppur.2012.11.025
  18. P. Liu, C. Li, X. Liang, G. Lu, J. Xu, X. Dong, W. Zhang, and F. Ji, Recovery of high purity ferric phosphate from a spent electroless nickel plating bath, Green Chem., 16, 1217-1224 (2014). https://doi.org/10.1039/C3GC41779D