• Title/Summary/Keyword: Photo Bioreactor

Search Result 20, Processing Time 0.028 seconds

Effect of Growth Improvement in Photosynthetic Bacteria as a Function of 880 nm Light Emitting Diode Luminosity

  • Kim, Dae-Sik;Chang, So-Young;Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • Light Emitting Diode (LED) of 880 nm was used as a function of luminosity in culture of the photosynthetic bacteria including Rhodobacter sp.. An array of 880 run LED was driven with an energy density of $6.0mW/cm^2$. In processing time, we were able to show that the cell growth were gained of significant changes in the pigment and in the dry weight. And we also showed that photosynthetic bacteria had the resonable relativity of optical density to dry weight. LED-880nm is of great significance for the potential use of photo-bioreactor construction.

  • PDF

Production of Single Cell Protein using the wasted CO2 gas in Semi-continuous and Continuous Process (폐탄산가스 고정화를 위한 반연속식 및 연속식 공정에서의 Single Cell Protein 생산)

  • Shin, Hang-Sik;Jang, Min-Young;Chae, So-Ryong;Park, Bong-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.73-78
    • /
    • 2001
  • The biological carbon dioxide fixation using microalgae and photo-bioreactor has been known as an effective carbon dioxide reduction technology. As algae has many other environmental factor for its growth, the desirable cultivation factors were investigated using a green alga, Euglena gracilis Z. In this study, Euglena gracilis Z showed good $CO_2$ fixation ability in high $CO_2$ concentration of 10-20% and it contained the high protein and vitamin E enough to be used as fodder. For the mass cultivation, the continuous and semi-continuous cultivation methods were employed. The optimum hydraulic retention time (HRT) for the continuous cultivation was 4 days at carbon dioxide concentration of 10%. In this condition, the final cell number was $3.57{\times}10^6/m{\ell}$. The growth of Euglena gracilis Z increased according to the light intensity.

  • PDF

Effect of Photo Bioreactor with Optical Panel on the Growth Rate of Chlorella vulgaris (도광판 삽입 반응기가 Chlorella vulgaris 증식에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.467-472
    • /
    • 2012
  • The aim of this study was to investigate the efficiency of optical panel (OP) on the growth rate of Chlorella vulgaris (C. vulgaris). The size of C. vulgaris (FC-16) was 3~$8{\mu}m$, having round in shape. The cells of C. vulgaris was cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. For this experiment, three light samples were prepared to evaluate the efficiency of OP on the growth rate of C. vulgaris; OP with LED (Light Emitting Diode) (Run 1), Fluorescent light (Run 2) and LED (Run 3). The specific growth rate of C. vulgaris for Run 1 was found to be 14 times and 5 times faster than Run 2 and Run 3, respectively. In addition, the average biomass of C. vulgaris for Run 1 was measured 11.79 g/L in 11 days. This means that the biomass for Run 1 was reached 30 times and 6.5 times higher than Run 2 and Run 3, respectively. This may be due to the fact the OP was increased the light uniformity and hindered the shading effects in photobioreactor. Therefore, the growth rate of biomass in photobioreactor with OP is compared better than the without OP used other photobioreactor.

Cultivation of Tetraselmis suecica under Different Types of Light Emitting Diodes (LED 조명을 이용한 광생물 반응기에서의 Tetraselmis suecica 배양 연구)

  • Lee, Jae-Keun;Lim, Jun-Hyuk;Lee, Tae-Yoon
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.757-761
    • /
    • 2012
  • The purpose of this study was to determine optimum conditions for the cultivation of Tetraselmis suecica (T. suecica) under illumination of four different types of LEDs (i.e., blue, red, white, and mixed). Initial cell concentration was $4{\times}10^4$ cells/mL and temperature of reactor was maintained between 21-$24^{\circ}C$. Specific growth rates were 0.72 $day^{-1}$(white), 0.58 $day^{-1}$(red), 0.49 $day^{-1}$(mixed), and 0.49 $day^{-1}$(blue). Thus, white LEDs was used for the cultivation of T. suecica. Tests with white LEDs under different light intensity, which was conducted to determine optimum light intensity of white LEDs, showed that 9,000 lux of illumination resulted in fastest cell growth and greatest cell concentrations. To avoid shadow effects by dense cell populations, aeration was performed. Cell concentration increased 3.8 times when aeration was used.

Effects of Various Intensities and Wavelengths of Light Emitting Diodes (LEDs) on the Growth of the Prasinophytes Tetraselmis suecica and T. tetrathele (담녹조강 Tetraselmis suecica 및 Tetraselmis tetrathele의 생장에 미치는 발광다이오드(Light-Emitting Diodes; LEDs) 광량과 파장의 영향)

  • Han, Kyong Ha;Oh, Seok Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.64-71
    • /
    • 2018
  • This study was conducted to investigate the effects of light intensity and wavelength on the growth of Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue light-emitting diode (LED; max=450 nm), a yellow LED (max=590 nm), a red LED (max=630 nm) and a fluorescent lamp (three wavelengths). The maximum growth rates (${\mu}_{max}$) of T. suecica and T. tetrathele under a red LED were 1.12/day and 0.95/day, respectively. Under a yellow LED, growth rates were 70% of the values for red wavelength, with low half-saturation constants (Ks). The optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would thus appear to be a three-phase culture, wherein a yellow LED is used during the lag phase and initial exponential phase to increase growth rate, followed by a red LED during the middle exponential phase to maximize growth rate, and finally a yellow LED again during the late exponential phase and stationary phase to achieve increased yield of useful bioactive substances.

The Treatment of Swine Wastes and the Production of High Protein Feedstocks from Photoheterotrophic Growth of Spirulina platensis (Spirulina platensis를 이용한 축산 폐수처리 및 고단백 사료원의 생산)

  • Sung, Ki-Heun;Lee, Chung-Ho;Park, Young-Shik;Kim, Hyun-Kyu;Yu, Ho-Keum;Ohh, Sang-Jip;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.197-202
    • /
    • 1994
  • Microalga, Spirulina platensis has been cultivated in a pilot scale photo-bioreactor to treat wastewater and to produce high protein feedstocks from swine waste containing medium. 0.31(1/day) of specific growth rate and 0.170 of bioenergeric yield were obtanined from batch cultivation in 30% waster containing medium, compared to 0.71(1/day) and 0.545 from clean culture. An optimal dilution concentration was decided as 20% of working volume, based upon the cell growth and biomass productivity. The removal rate of nitrates in the wastewater was decreased as the adding concentration of wastewater was increased while the decrease of total phosphates was reversed, showing 0.33(1/day) and 0.30(1/day) of rate constants for nitrate removal in 10% addition and for phosphate removal in 30% addition, respectively. The chemical composition and amino acid profile of the biomass were superior to those of commerically available health food product, Spirulina sp.

  • PDF

Biomass Production Potential of Chlorella vulgaris Under Different CO2 Concentrations and Light Intensities

  • Lee, Chang-Min;Kim, Mi-Jeong;Sanjay, Kumar;Kwag, Jung-Hoon;Ra, Chang-Six
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.261-268
    • /
    • 2011
  • The increasing demand of the crops (soybean and corn) for biofuel production has increased the focus of the animal nutritionists to look for alternative feeds, which are economic and environmental friendly. To identify microalgae as suitable candidate as an alternative feed, growth response of Chlorella vulgaris was studied under varying concentrations of carbon dioxide (0.07, 1.4, 3.0 and 5.0%) and photon densities (39.19, 72.97, 105.41, 116.22, 135.14, $175.68\;{\mu}mol/m^2/s$) by employing a photo-bioreactor. Swine wastewater was also investigated as nutritional source to economize the biomass production. Results showed that the higher biomass production was found to be at 3.0% $CO_2$ compared to other $CO_2$ concentrations. However, no difference in biomass production was found at $105.41\;{\mu}mol/m^2/s$ and above photon densities with 12 h of photoperiodicity. It was observed that C. vulgaris could easily grow in 200 times diluted swine wastewater and growth was found to be similar with that of artificial medium. Provided the conducive conditions for optimal growth, it has also the potentiality of depleting ammonia nitrogen ($NH_4$-N) and orthophosphate ($PO_4^{3-}$-P) completely from the wastewater after 3~4 days of cultivation. Thus, growing C. vulgaris would not only solve the problem of animal feed, but also help in biological $CO_2$ mitigation and wastewater treatment.

Optimum Cultivation Condition of Dunaliella Salina: Effects of Light Emitting Diode as a Lighting Source, Temperature, Light Intensity and Air Flow Rates (해양미세조류 Dunaliella Salina 최적 배양을 위한 연구: LED 조명, 온도, 광도 및 공기주입 속도에 따른 효과를 중심으로)

  • Choi, Boram;Kim, Dongsu;Lee, Taeyoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.630-636
    • /
    • 2012
  • The purpose of this study was to determine optimum wavelength, light intensity, aeration rate, and temperature for the cultivation of Dunaliella salina illuminated by various types of light emitting diode. Growth rates of Dunaliella salina were faster at higher temperature than the growth rate at lower temperature. Among the culturing temperatures, $22^{\circ}C$ was the optimum temperature for the growth of Dunaliella salina. White LED was the most efficient light source and lower light intensity (3,000 Lux) resulted in better biomass production (1.30 g/L). The value of aeration varied between 0 and 2.4 vvm at the illumination of 3,000 Lux of white light emitting diode. Highest specific growth rate of $1.12day^{-1}$ was obtained at no-aeration and lower specific growth rates were obtained for other aeration tests, which indicated that aeration could be harmful for the cultivation of Dunaliella salina.

Effects of Light Wavelengths on the Growth and Paralytic Shellfish Toxin Production of Alexandrium catenella and A. pacificum (유독 와편모조류 Alexandrium catenella와 A. pacifcium의 생장과 마비성 독소 생산에 미치는 빛의 파장의 영향)

  • Nam, Ki Taek;Kim, Seok-Yun;Moon, Chang-Ho;Kim, Chang-Hoon;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.84-92
    • /
    • 2020
  • To supply a stable amount of standard material to detect paralytic shellfish toxin (PST), we examined possible increases in toxic content in Alexandrium catenella and A. pacificum using a light emitting diode (LED), which is one of the most eco-friendly and economical lighting method. When comparing the growth rates of organisms and wavelengths of light used, the half saturation constants (Ks) of red wavelength were higher than those of other wavelengths. In contrast, the Ks of blue wavelength were lower than those of other wavelengths. Moreover, when comparing the toxic contents and wavelengths of light used, red wavelength produced approximately 8 times more toxic content in A. catenella and approximately 3.2 times more toxic content in A. pacificum than other wavelengths. Thus, the toxic content present in the organism might be closely related to the Ks of light. The optimum light source to be used to ensure economically ef ective and productive growth in an Alexandrium culture system (photo-bioreactor) would likely consist of a two-phase culture, wherein a blue LED is used during the lag and exponential phases to increase growth rates, followed by the use of a red LED during late exponential and stationary phases to achieve increased PST yields.

The Effects of the Light Quality of a Light Emitting Diode (LED) on the Phosphate Uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele (담녹조강 Tetraselmis suecica와 Tetraselmis tetrathele의 인산염 흡수에 미치는 발광다이오드 파장의 영향)

  • Han, Kyong Ha;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 2019
  • This study was conducted to investigate the effects of the light quality of a Light Emitting Diode (LED) on the phosphate uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue LED (max = 450 nm), a yellow LED (max = 590 nm), a red LED (max = 630 nm) and a fluorescent lamp (control) at $100{\mu}mol\;m^{-2}\;s^{-1}$. The maximum uptake rates (${\rho}_{max}$) of T. suecica and T. tetrathele under the red LED were $6.35pmol\;cell^{-1}\;hr^{-1}$ and $9.85pmol\;cell^{-1}\;hr^{-1}$, respectively. The half saturation constants (Ks) of two species were $9.43{\mu}M$ and $21.2{\mu}M$, respectively. The phosphate affinity of the two species under the red LED was higher than that of other wavelengths. Thus, the optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would be red LEDs because of the high growth rate shown, regardless of relatively low nutrient conditions.