DOI QR코드

DOI QR Code

Optimum Cultivation Condition of Dunaliella Salina: Effects of Light Emitting Diode as a Lighting Source, Temperature, Light Intensity and Air Flow Rates

해양미세조류 Dunaliella Salina 최적 배양을 위한 연구: LED 조명, 온도, 광도 및 공기주입 속도에 따른 효과를 중심으로

  • Choi, Boram (Department of Environmental Engineering, Pukyung National University) ;
  • Kim, Dongsu (Department of Environmental Engineering, Pukyung National University) ;
  • Lee, Taeyoon (Department of Environmental Engineering, Pukyung National University)
  • Received : 2012.08.24
  • Accepted : 2012.09.28
  • Published : 2012.09.28

Abstract

The purpose of this study was to determine optimum wavelength, light intensity, aeration rate, and temperature for the cultivation of Dunaliella salina illuminated by various types of light emitting diode. Growth rates of Dunaliella salina were faster at higher temperature than the growth rate at lower temperature. Among the culturing temperatures, $22^{\circ}C$ was the optimum temperature for the growth of Dunaliella salina. White LED was the most efficient light source and lower light intensity (3,000 Lux) resulted in better biomass production (1.30 g/L). The value of aeration varied between 0 and 2.4 vvm at the illumination of 3,000 Lux of white light emitting diode. Highest specific growth rate of $1.12day^{-1}$ was obtained at no-aeration and lower specific growth rates were obtained for other aeration tests, which indicated that aeration could be harmful for the cultivation of Dunaliella salina.

본 연구는 해양미세조류 Dunaliella salina을 LED 광원을 이용하여 배양한 연구로 배양에 필요한 최적의 파장, 광도, 공기공급속도 및 배양온도를 찾기 위하여 수행되었다. 낮은 배양온도에서보다는 높은 온도에서 성장이 빨랐으나, 본 실험에서는 $22^{\circ}C$에서 가장 잘 성장하는 것으로 확인되었다. LED 파장에 따른 성장실험에서는 백색 LED가 배양에 가장 효과적이었으며, 광도에 따른 실험에서는 실험 시 고려한 3가지 광도 중(3,000, 6,300, 8,000 Lux) 3,000 Lux에서 최대 세포농도인 1.30 g/L를 나타내었다. 공기공급속도의 증가는 Dunaliella salina의 성장속도와 반비례의 관계를 나타내었는데, 공기를 공급하지 않은 경우의 비증식속도 $1.12day^{-1}$와 비교하면 공기공급은 본 미세조류의 성장에 저해요인으로 작용함을 알 수 있었다.

Keywords

References

  1. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E. and Peck, M. W., "Biochemical Methane Potential of Biomass and Waste Feedstocks," Biomass Bioenergy, 5(1), 95-111(1993). https://doi.org/10.1016/0961-9534(93)90010-2
  2. Xiong, M. and Qingyu, W., "Biodiesel production from heterotrophic microalgal oil," Bioresour. Technol., 97, 841-846 (2006). https://doi.org/10.1016/j.biortech.2005.04.008
  3. Jeon, S. M., Kim, I. H., Ha, J. M. and Lee, J. H., "Overview of technology for fixation of carbon dioxide using microalgae," J. Kor. Ind. Eng. Chem., 19, 145-150(2008).
  4. Borowitzka, M. A., Borowitzka, L. J. and Kessly, K., "Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina," J. Appl. Phycol., 2, 119-129(1990).
  5. Weiss, M. and Bental, M. and Pick, U., "Hydrolysis of polyphosphates and permeability change in reponse to osmotic shocks in cells of the halotolerant alga Dunaliella," Plant Physiol., 97, 1241-1248(1991). https://doi.org/10.1104/pp.97.3.1241
  6. Ben-Amotz A., "New mode of Dunaliella Biotechnology : Two-phase growth of$\beta$-carotene Production," J. Appl. Phycol., 7, 65-68(1995). https://doi.org/10.1007/BF00003552
  7. Lers A., Ham L. and Ada, Z., "Co-regulation of a gene homologous to early light-induced genes in higher plants and $\beta$-carotene biosynthesis in the alga Dunaliella bardawil," J. Biol. Chem., 266(21), 13698-13705(1991).
  8. Ben-Amotz, A., Shaish, A. and Avron, M., "Mode of Action of the massively accumulated $\beta$-Carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation," Plant Physiol., 91, 1040-1043(1989). https://doi.org/10.1104/pp.91.3.1040
  9. Constance A. O., Steven, J. S. and George, L. C., "Comparison of liquid chromatographic methods for determination of Cis-Trans isomers of $\beta$-carotene," J. Assoc. Off. Anal. Chem., 74(1), 36-42(1991).
  10. Mata, T., Martins, A., Caetano, N., "Microalgae for Biodiesel Production and Other Applications: A Review," Renewable Sustainable Energy Rev., 14(2), 217-232(2010). https://doi.org/10.1016/j.rser.2009.07.020
  11. Chen, C. Y., Saratale, G. D., Lee, C. M., Chen, P. C. and Chang, J. S., "Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers," Int. J. Hydrogen Energy, 33, 6878-6885(2008). https://doi.org/10.1016/j.ijhydene.2008.09.009
  12. Wang, C., Fu, C. and Liu, Y., "Effects of Using Light-emitting Diodes on the Cultivation of Spirulina Platensis," Biochem. Eng. J., 37(12), 21-25(2007). https://doi.org/10.1016/j.bej.2007.03.004
  13. Katsuda, T., Lababpour, A., Shimahara, K. and Katoh, S., "Astaxanthin Production by Haematococcus Pluvialis under Illumination with LEDs," Enzyme Microb. Technol., 35(12), 81-86(2004). https://doi.org/10.1016/j.enzmictec.2004.03.016
  14. Lee, C. and Palsson, B., "High-density Algal Photobioreactors Using Light-emitting Diodes," Biotechnol. Bioeng., 44 (7), 1161-1167(1994). https://doi.org/10.1002/bit.260441002
  15. Tawfiq, S., Abu-Rezq, Suad Al-Hooti, and Dangly, A., Jacob, "Optimum culture conditions required for the locally isolated Dunaliella salina," J. Algal Biomass Utln., 1(2), 12-19(2010).
  16. Elena, S., Virginia, E. and Walter, H., "Dymamics of oxygen production/ consumption in Dunaliella salina, Thalassiosira weissflogii and Heterocapsa triquetra circulation within a simulated upper mixed layer," Invest. Mar., 34(2), 97-108 (2006).
  17. Chung, W. J., Wang, M. S., Choi, S. G., Kim, J. K. and Jeong, B. C., "High cell density cultures of micro-algal Dunaliella bardawil," Korean J. Biotechnol. Bioeng., 14(2), 160-166(1999).
  18. Park, J. H., Lee, S. Y., Kim, Y. N. and Lee, H. Y., "The production of algal hydrocarbons in outdoor cultivations of Dunaliella salina 1650," J. Microbiol. Biotechnol., 3(1), 46-50(1993).
  19. Thacker, D. R. and Bobcock, H., "The mass culture of algae," J. Sol. Energy Sci. Eng., 1, 37-49(1957). https://doi.org/10.1016/0038-092X(57)90054-3
  20. Jee, S. D., Lee, S. H., Choi, K. J., Park, J. K. and Kim C. H., "Sensibility Evaluation on the correlated color temperature in White LED Lighting," J. Korean Inst. Illuminating and Electrical Installation Eng., 22(4), 1-12(2008).
  21. 유경원, 정욱진, 정병철, "미세조류 Dunaliella bardawil에서 오존과 과산화수소에 의한 $\beta$-carotene의 축적과 식용기름을 이용한 추출," J. Microbiol., 35(4), 289-295(1999).
  22. Sukenik, A., Bennett, J., Mortain-Bertrand, A. and Falkowski, P. G., "Adaption of the photosynthetic apparatus to irradiance in Dunaliella tertiolecta," Plant Phys., 92, 891-898(1990). https://doi.org/10.1104/pp.92.4.891
  23. Ben-Amotz, A., Shaish, A. and Avron, M., "Accumulation of $\beta$-carotene in halotolerant algea: purification and characterization of $\beta$-carotene-rich globules from Dunaliella bardawil (Chlorophyceae)," J. Phycol., 18, 529-537(1982). https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  24. Zhu, T. H. and Jiang, J. G., "Continuous cultivation of Dunaliella salina in photobioreactor for the production of $\beta$- carotene," Eur. Food Red Technol., 227, 953-959(2008). https://doi.org/10.1007/s00217-007-0789-3