• Title/Summary/Keyword: Phosphorus Mass Balance

Search Result 23, Processing Time 0.025 seconds

A Mathematical Model for the Behavior of Nitrogen and Phosphorus During the Aerobic Digestion (호기성 소화과정 중 질소 및 인의 거동에 대한 수학적 모형)

  • Choung, Youn Kyoo;Ko, Kwang Baik;Park, Joon Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.635-644
    • /
    • 1994
  • A mathematical model was developed to predict the concentrations of various nutrients in supernatants during aerobic digestion which is suitable to be employed in small wastewater treatment plants with such advantages as low capital cost and stable process. Significant reactions were determined with observing the behavior of nitrgen and phosphorus, and the model equations were built up in the form of simultaneous differential equations considering Mass Balance. Laboratory batch experiments were carried out at $20^{\circ}C$ and pH $7.5{\pm}0.5$ on the aerobic digestion of waste activated sludge at different solid levels. Nonlinear regression analysis was performed to estimate various reaction rate constants. The developed model can predict the behavior of Biomass N, dissolved organic N, $NH_4{^-}$-N, $NO_x{^-}$-N, and Biomass P, dissolved organic P, $PO_4{^-}$-P in aerobic digestion process. In this study, the results of simulation showed that dissolved nutrients had more effects on supernatants than nutrients in biomass, and phosphorus was more effective on supernatants than nitrogen.

  • PDF

Analysis of the current status and implications of nitrogen recovery from livestock manure (가축분뇨로부터 질소 회수 연구 현황 및 시사점 분석)

  • Im, Seongwon;Kim, Sangmi;Kim, Jimin;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.37-46
    • /
    • 2021
  • Nitrogen and phosphorus in livestock manure are environmental pollutants, but also could be valuable industrial resources. In the present study, we (1) introduced various nitrogen removal technologies such as stripping, thermal method, membrane, and electrodialysis, (2) reviewed relevant studies reported in 2011-2020, in particular, full-scale experiences, and (3) assessed each technologies based on the above survey results. In addition, we provided the information on the appropriate range of the pH, temperature, gas and liquid ratio, and so on in ammonia stripping process, and expected mass balance when it is connected to biogasification process. We hope the content herein can be helpful for making policy and operating full-scale plant in Korea.

Comparison of Pollutants Removal between the Intermittently Aerated Bioreactor(IABR) and Intermittently Aerated Membrane Bioreactor(IAMBR) (간헐포기공정과 막결합 간헐포기공정의 오염물질 제거특성 비교)

  • Choi, Chang Gyoo;Lee, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.119-124
    • /
    • 2006
  • The purpose of this study was the comparison of pollutants removal and the track study of the nitrogen and phosphorus, the estimation of the nitrification and denitrification rate, and the investigation of the nitrogen mass balance between intermittently aerated membrane bioreactor(IAMBR) and intermittently aerated bioreactor(IABR), thus it verified the validity of the membrane submergence. As a result, it had no difference of organic matter removal, however, IAMBR showed better efficiency than IABR in the nutrients. Also, $NO_3{^-}$-N concentration at the anoxic state in the reactor was lower in IAMBR, and the denitrified nitrogen of IAMBR was 40.9%, that of IABR was 10.7%, thus it found out that the denitrification capability of IAMBR was higher than IABR above fourfold. Therefore, it seems resonable to conclude that the membrane helps to improve the removal of pollutants, because of the high MLSS concentration and the available method of intermittent inflow/outflow.

Self-purification Capacity of Eutrophic Buk Bay by DO mass Balance (부영양화된 북만의 용존산소 수지에 의한 자정능력)

  • CHOI Woo-Jeung;NA Gui-Hwan;CHUN Young-Yell;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.21-30
    • /
    • 1991
  • In Summer, oxygen-deficient water masses were developed extensively in the closed eutrophic bays such as Chinhae Bay which results in mass mortality of marine organisms and severe decrease the production of the bay every year. Under the circumstances, this study was performed to investigate the oxygen depletion relating to eutrophication, and also to evaluate self-purfication capacity of Buk Bay by dissolved oxygen mass balance in 1988. The mean concentration of total inorganic nitrogen, phosphate phosphorus and chlorophyll-a were $11.06{\mu}g-at/l,\;0.80{\mu}g-at/l\;and\;1.11mg/m^3$ respectively, which were over eutrophication criteria. Oxygen-deficient water mass was formed in July with the minimum concentration of 2.08ml/l(mean) at the bottom of all stations and recovered slowly in August. The decay and reaeration coefficient calculated from dissloved oxygen sag curve were 0.222/day and 0.018ml/l/day, respectively. To maintain above 4ml/l of oxygen to prevent oxygen-deficient water mass, it is recommendable to supply as much as 0.856ml/l/day of dissolved oxygen or should be reduced the same mass loading of BOD from watershed by the construction of wastewater treatment plant.

  • PDF

Simultaneous Estimation of Diffuse Pollution Loads and Model Parameters for River Water Quality Modeling (하천 수질모형에 의한 비점 오염 부하량과 모형 매개변수의 동시 추정)

  • Jun, Kyung-Soo;Kang, Ju-Whan
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1009-1018
    • /
    • 2004
  • A systematic method using an optimal estimation algorithm is presented for simultaneous estimation of diffuse pollution distributed along a stream reach and model parameters for a stream water quality model. It was applied with the QVAL2E model to the South Han River for optimal estimation of kinetic constants and diffuse loads along the river. Initial calibration results for kinetic constants selected from a sensitivity analysis reveal that diffuse source inputs for nitrogen and phosphorus are essential to satisfy the system mass balance. Diffuse loads for total nitrogen and total phosphorus were estimated solving the expanded inverse problem. Comparison of kinetic constants estimated simultaneously with diffuse sources to those estimated without diffuse loads, suggests that diffuse sources must be included in the optimization not only for its own estimation but also for adequate estimation of the model parameters. Application of optimization method to river water quality modeling is discussed in terms of the sensitivity coefficient matrix structure.

A Study of the comparison of the treatment characteristics between ASA system and CAS system (고도단계유입폭기법과 표준활성슬러지법의 처리특성 비교)

  • Knag, Yong-Tae;Cho, Yong-Hyun;Han, Sang-Yun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.112-115
    • /
    • 2007
  • Currently an increase in domestic sewage and industrial wastewater causes serious water pollution in Korea. To solve water pollution problems, conventional activated sludge (CAS) system is generally used in wastewater treatment plant but this process is so ineffective in nitrogen and phosphorus. Even if CAS system is the major process, it must be improved instantly so as to remove nitrogen and phosphorus. Otherwise, the serious water pollution problems can't be resolved with CAS system. Therefore this study focused on the comparison of the treatment characteristics between ASA system and CAS system. And also the mass balance of each process of ASA system. The results from operating advanced step aeration (ASA) system indicated that the removal efficiency of BOD, COD, and SS was 89.9%, 74.5%, and 89.0% respectively. In comparison, the removal efficiency of BOD, COD, and SS for CAS system was 89.5%, 71.8%, and 89.5% respectively. In addition to the results, the TN removal efficiency of ASA system was 76.5% comparing to 32.7% of CAS system. It was concluded that the TN removal efficiency of ASA system was 44% higher than CAS system. And the TP removal efficiency was 81.4% in ASA system comparing to 25.2% in CAS system. It also means that over 56% of TP was removed in ASA system comparing to CAS system.

  • PDF

The Development of Estimation Model for Iron Compound Originated from Anaerobic Microbial Corrosion (혐기성 미생물부식에 의해 생성되는 철화합물 추정식 개발)

  • Jeon, Seok-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.379-386
    • /
    • 2002
  • In this study, estimation model for iron compound originated from upflow, anaerobic fixed bed reactor, which treats sewage domestic wastewater, was developed. The estimation model was formulated by a mathematical expression which was based on the mass balance. Below the HRT of 60 minute, sulfide concentration combining with iron $FeS_2$ is the highest because the maximum sulfate consumption rate $V_{maxS}$ and half-saturation constant of sulfate $K_{mS}$ exert an important effect on the estimation model as temperature was increased. But increment of $FeS_2$ concentration is weakened above the HRT of 60 minutes and represent the lowest value at the HRT of 108 minutes. It implies that liquid phase distribution ratio of sulfide ${\alpha}r$ becomes lower as temperature was increased. While phosphorus concentration combining with iron $Fe_3(PO_4)_3$ is increased as HRT and temperature are increased, which is affected by phosphorus removal rate constant $k_p$. As the result of estimating the iron concentrations of corrosion by the model, the concentration of iron corrosion is higher than any other at the HRT of 108 minute and $20^{\circ}C$. The predicted values were compared with measured ones at different HRT(13.5, 27, 54, 108 min) and temperature(20, 25, $30^{\circ}C$). The experimental data could be fitted with the simulated curves. Therefore, the mathematical expression could be applicable to design full-scale wastewater treatment plants.

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Variations and Characters of Water Quality during Flood and Dry Seasons in the Eastern Coast of South Sea, Korea (한국 남해 동부 연안 해역에서 홍수기와 갈수기 동안 수질환경 특성과 변동)

  • Jeong, Do Hyeon;Shin, Hyeon Ho;Jung, Seung Won;Lim, Dhong Il
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • Physiochemical characters of sea waters during summer flood- and winter dry-seasons and their spatial variations were investigated along the coastal area off the eastern South Sea, Korea. Using the hierarchical clustering method, in this study, we present comprehensive analyses of coastal waters masses and their seasonal variations. The results revealed that the coastal water of the study area was classified into six water masses (A to F). During summer season, the surface water was mainly occupied by the coastal pseudo-estuarine water (water mass B) with low salinity and high nutrients and the river-dominated coastal water (water mass C) with low nutrients, respectively. The bottom water was dominated by cold water (water mass D) with very low temperature, high salinity and high nutrients, compared to masses of surface water. Notably, the water mass B, with high concentrations of nutrients (silicate and nitrogen) and low salinity, which is strongly controlled by the water quality of river freshwater, seems to play an important role in controlling the water quality and further regulating physical processes on ecosystem in the eastern coastal area of South Sea. The water mass D (bottom cold water) coupled with a strong thermocline, which exists in near-bottom layer along the western margin of Korea Strait, has a low temperature, pH and DO, but abundant nutrients. This water mass disappears in winter owing to strong vertical mixing, and subsequently may act as a pool for nutrients during winter dry-season. On the other hand, vertically well-mixed water column during the winter season was typically occupied by the Tsushima (water mass E) and the coastal water (water mass F) with a development of coastal front formed in a transition zone between them. These winter water masses were characterized by low nutrient concentration and balance in N/P ratio, compared with summer season with high nutrient concentrations and strong N-limitation. Accordingly, the analysis of water masses will help one to better chemical and biological processes in coastal area. In most of the study area, characteristically, the growth of phytoplankton community is limited by nitrogen, which is clearly different with coastal environment of West Sea of Korea, with a relative lack of phosphorus. It showed the western and the southern coasts in Korea are substantially different from each other in environmental and ecological characteristics.

Evaluation of Internal Phosphorus Loading through the Dynamic Monitoring of Dissolved Oxygen in a Shallow Reservoir (수심이 얕은 저수지에서 용존산소 동적 모니터링을 통한 인 내부부하 평가)

  • Park, Hyungseok;Choi, Sunhwa;Chung, Sewoong;Ji, Hyunseo;Oh, Jungkuk;Jun, Hangbae
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • In these days, agricultural reservoirs are considered as a useful resource for recreational purposes, tour and cultural amenity for vicinity communities as well as irrigation water supply. However, many of the agricultural reservoirs are showing a eutrophic or hyper-eutrophic state and high level of organic contamination. In particular, about 44.7% of the aged agricultural reservoirs that constructed before 1945 exceed the water quality criteria for irrigational water use. In addition to external loading, internal nutrient loading from bottom sediment may play an important role in the nutrient budget of the aged reservoirs. The objectives of this study were to characterize variations of thermal structure of a shallow M reservoir (mean depth 1.7 m) and examine the potential of internal nutrient loading by continuous monitoring of vertical water temperature and dissolved oxygen (DO) concentration profiles in 2015 and 2016. The effect of internal loading on the total loading of the reservoir was evaluated by mass balance analysis. Results showed that a weak thermal stratification and a strong DO stratification were developed in the shallow M Reservoir. And, dynamic temporal variation in DO was observed at the bottom of the reservoir. Persistent hypoxic conditions (DO concentrations less than 2 mg/L) were established for 87 days and 98 days in 2015 and 2016, respectively, during the no-rainy summer periods. The DO concentrations intermittently increased during several events of atmospheric temperature drop and rainfall. According to the mass balance analysis, the amount of internal $PO_4-P$ loading from sediment to the overlying water were 37.9% and 39.7% of total loading during no-rainy season in 2015 and 2016, respectively on August when algae growth is enhanced with increasing water temperature. Consequently, supply of DO to the lower layer of the reservoir could be effective countermeasure to reduce nutrient release under the condition of persistent DO depletion in the bottom of the reservoir.