• Title/Summary/Keyword: Phosphor converted (PC) white LED

Search Result 5, Processing Time 0.018 seconds

Effects of Current Modulation Conditions on the Chromaticity of Phosphor Converted (PC) White LEDs

  • Kim, Seungtaek;Kim, Jongseok;Kim, Hyungtae;Kim, Yong-Kweon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.449-456
    • /
    • 2012
  • For two well-known modulation methods, stepwise current modulation (SCM) and pulse width modulation (PWM), the effects of driving current modulation conditions on chromaticity were experimentally investigated in a white LED lighting system. For the experimental implementation of both SCM and PWM, a white LED lighting was fabricated using phosphor converted (PC) white light emitting diodes (LEDs) and a driving circuit module was developed. By using them, the variations of illuminance, color coordinates, and spectrum were evaluated under various forward current conditions. Through the analysis in color coordinates, yellow shift in SCM and blue shift in PWM were observed on chromaticity diagrams with increasing average driving current. In addition, in order to analyze color deviation quantitatively, color distance before and after current increase, and the correlated color temperature (CCT) were calculated. As a result, for the white LED lighting in both modulation conditions, the maximum difference in the calculated CCT was obtained close to 1000 K. It means that careful consideration is required to be taken in the design of illumination systems to avoid serious problems such industrial accidents.

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

Preparation and Luminescence Properties of Spherical Sr4Al14O25:Eu2+ Phosphor Particles by a Liquid Synthesis (액상법을 이용한 구상의 Sr4Al14O25:Eu2+ 형광체의 합성 및 발광 특성)

  • Lee, Jeong;Choi, Sungho;Nahm, Sahn;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.351-356
    • /
    • 2014
  • A spherical $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was $1,100^{\circ}C$. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the $4f^65d{\rightarrow}4f^7$ electronic transitions of $Eu^{2+}$. The critical quenching-concentration of $Eu^{2+}$ in the synthesized $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.

The Comparison of the Application of Two Different Color Quality Evaluation Methods

  • Jeong, Hee-Suk;Ryeom, Jeongduk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1673-1681
    • /
    • 2018
  • In this paper, the fabrication of a white light-emitting diode (WLED) package capable of producing different color rendering indexes (CRI ($R_a$)) using different types of phosphors (YAG:Ce, Silicate, Nitride, LuAG) for the LEDs is presented. The color quality is evaluated based on the current and temperature variation conditions. The evaluation method for color quality compares the existing CIE 13.3 method and the new IES TM-30-15 method. The CRI ($R_a$) defined in the conventional CIE 13.3 has the disadvantage. This cannot offer any information relevant to the user's preference. However, the newly proposed IES TM-30-15 method suggests the additional measure related to user's preference such as Color Gamut ($R_g$). The present experimental results obtained using the IES TM-30-15 show that the color quality of the WLEDs using green and red phosphors are better than that of the WLEDs using yellow phosphor, but their luminous efficacies are lower. The color quality of WLEDs using green and red phosphors are more stable than that of the WLEDs using yellow phosphor, for current and temperature variations, and it is verified that the phosphor causes this change. The evaluation method for color quality, based on IES TM-30-15, is proved to be capable of overcoming the problems of the existing evaluation methods by this study.

Improving the Color Gamut of a Liquid-crystal Display by Using a Bandpass Filter

  • Sun, Yan;Zhang, Chi;Yang, Yanling;Ma, Hongmei;Sun, Yubao
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • To improve the color gamut of a liquid-crystal display (LCD), we propose a bandpass filter that is added to the backlight unit to optimize the backlight spectrum. The bandpass filter can only transmit red, green and blue light in the visible range, while reflecting the unwanted light. We study the optical properties of the bandpass filter using the transfer-matrix method, and the effect of the bandpass filter on the color gamuts of LCDs is also investigated. When a bandpass filter based on a 5-layer configuration comprising low and high refractive indices ((HL)2H) is used in phosphor-converted white-light-emitting diode (pc-WLED), K2SiF6:Mn4+ (KSF-LED), and quantum-dot (QD) backlights, the color gamuts of the LCDs improve from 72% to 95.3% of NTSC, from 92% to 106.7% of NTSC, and from 104.3% to 112.2% of NTSC respectively. When the incident angle of light increases to 30°, the color gamuts of LCDs with pc-WLED and KSF-LED backlights decrease by 2.9% and 1% respectively. For the QD backlight, the color gamut almost does not change. When the (HL)2H structure is coated on the diffusion film, the color gamut can be improved to 92.6% of NTSC (pc-WLED), 105.6% of NTSC (KSF-LED), and 111.9% of NTSC (QD). The diffusion film has no obvious effect on the color gamut. The results have an important potential application in wide-color-gamut LCDs.