• Title/Summary/Keyword: Phosphor coating

Search Result 63, Processing Time 0.028 seconds

Changes in the Moisture Stability of $CaS:Eu^{2+}$ Phosphors with Surface Coating Methods

  • Yoo, Sun-Hwa;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.907-911
    • /
    • 2009
  • To improve the moisture stability of the $CaS:Eu^{2+}$ red phosphor, surface coatings with silica nanoparticles were performed using five different methods, i.e., $P_1$, $P_2$, $P_3$, $P_4$, and $P_5$. The phosphors were coated with silica nanoparticles using a dip coating method ($P_1$) and sol-gel method ($P_2$). The phosphors were coated using a solution containing silica nanoparticles and poly(1-vinyl-2-pyrrolidone), PVP, $(P_3$). The phosphors were also coated with silica nanoparticles by reacting with the 1-vinyl-2-pyrrolidone (VP) monomer ($P_4$) or by reacting with mixtures containing VP and tetraethylorthosilicate ($P_5$). A decrease in the photoluminescence (PL) intensity was observed regardless of the coating methods. However, the moisture stability of the phosphors was enhanced by the coating when aged in a temperature-controlled humidity chamber. Among these methods, the $P_4$ (or $P_5$) method exhibited the greatest increase in moisture stability of the phosphors. The coated phosphors showed a relatively constant intensity with aging time, whereas the uncoated phosphor showed a decrease.

A Study on Manufacture of Phosphor Screen for Video Phone Tube (Video Phone Tube用 형광박의 제조에 관한 연구)

  • Woo, Jin-Ho
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.123-138
    • /
    • 2004
  • The video phone tube (VPT) of monochrome CRT have utilized home door phone, fish-finder and the rear watch monitors. Phosphor screen formation is made by electrodeposition spin coating and thermal transfer methods etc. Recently, thermal transfer method was developed, as a novel method, to form the phosphor surface for mnonchrom VPT. This method have advantages of simple process, automatization, clean environment, saving raw material and saving running-cost. In this study, it was developed new phosphor of VPT, and tested about phosphor paste properties. An experimental studies of VPT as a new phosphor property and improved VPT's manufacturing process shortening and brightness. As thermal transper method is a paste processing, it is important that rheology of phosphor effects on the formation of phosphor screen. Hence this paper was studied rheology properties of phosphor paste and the formation of phosphor screen had looked most suitable condition. Experimented thermal separation properties of low calcination temperature resin and the result analyzed comparison by TGA. Also, examined calcination properties to reduce remaining binder phosphor.

  • PDF

A Study on VPT phosphor screen formed by screen printing and thermal transfer method (스크린 인쇄법 및 열전사법에 의한 VPT 형광막의 형성연구)

  • Cho M.J.;Nam S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.593-594
    • /
    • 2006
  • A novel thermal transfer method was developed to form the phosphor screen for VPT(Video Phone Tube). This method have advantages of simple process, clean environment, saving raw material and running-cost comparison of electrodeposition, spin coating of conventional methods. But now applying phosphor screen for thermal transfer method has been formed three layers (phosphor layer, ITO layer and thermal adhesive layer) on the PET film as substrate. This is complex process, run to waste of raw-material and require of high cost. Also ITO paste at present has been imported from Japan. To improve these problems, we have manufactured phosphor screen formed by two layers (phosphor layer and ITO layer). We have developed ITO paste that had both conductive and excellent thermal transfer abilities, made it of domestic raw-material.

  • PDF

Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property (나노 크기의 Gd2O3:Eu3+ 적색형광체가 코팅된 판상 Mica의 제조 및 형광특성)

  • Ban, Se-Min;Park, Jeong Min;Jung, Kyeong Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kang, Myung Chang;Kim, Dae-Sung
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.457-463
    • /
    • 2017
  • Nanosized $Gd_2O_3:Eu^{3+}$ red phosphor is prepared using a template method from metal salt impregnated into a crystalline cellulose and is dispersed using a bead mill wet process. The driving force of the surface coating between $Gd_2O_3:Eu^{3+}$ and mica is induced by the Coulomb force. The red phosphor nanosol is effectively coated on mica flakes by the electrostatic interaction between positively charged $Gd_2O_3:Eu^{3+}$ and negatively charged mica above pH 6. To prepare $Gd_2O_3:Eu^{3+}$-coated mica ($Gd_2O_3:Eu/mica$), the coating conditions are optimized, including the stirring temperature, pH, calcination temperature, and coating amount (wt%) of $Gd_2O_3:Eu^{3+}$. In spite of the low luminescence of the $Gd_2O_3:Eu/mica$, the luminescent property is recovered after calcination above $600^{\circ}C$ and is enhanced by increasing the $Gd_2O_3:Eu^{3+}$ coating amount. The $Gd_2O_3:Eu/mica$ is characterized using X-ray diffraction, field emission scanning electron microscopy, zeta potential measurements, and fluorescence spectrometer analysis.

Improved White Light Emitting Diode Characteristics by Coating GdAG:Ce Phosphor

  • Joshi, Charusheela;Yadav, Pooja;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • White LEDs, based on blue LED chips coated with a yellow emitting phosphor (YAG:Ce), have several disadvantages. In this paper, we report the improvement in CRI [Color Rendition Index] using $GdAl_5O_{12}:Ce$ (GdAG:Ce) and related phosphors for blue LEDs. A modified combustion synthesis route using mixed fuel was used for synthesis route. By using this procedure, we formed the desired compounds in a single step. LEDs were then fabricated by coating the blue LED chips (CREE 470 nm, 300 micron) with the GdAG:Ce phosphor dispersed in epoxy resin. The CRI typically between 65~70 for the YAG:Ce based LED was improved to 87 for LEDs fabricated from the Gd(Al,Ga)G phosphors.

Stability of Coated Green Phosphors for Enhancing Picture Quality of PDP

  • Han, B.Y.;Kim, J.H.;Yoo, J.S.;Kim, Y.K.;Hur, Y.K.;Choi, C.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.942-945
    • /
    • 2006
  • The picture quality of a plasma display panel is very sensitive to the phosphor characteristics such as luminescence, decay time, surface properties, and even longevity of phosphor material in itself. In our previous work, the discharging characteristics in green cell of PDP were demonstrated to be enhanced by coating $Zn_2SiO_4:Mn^{2+}$ phosphors with positively charged metal oxide such as MgO. Here, $Zn_2SiO_4:Mn^{2+}$ phosphors were coated by various metal oxides for examining the coating effect on the picture quality. Specially, longevity while fabricating the panel was investigated for panel application in this work. Also the effects of ion and electron bombardment on the phosphor surface will be discussed in this work.

  • PDF

Spectroscopic characterization of electroluminescent ZnS:Cu,Cl phosphor coated by sol-gel process

  • Lee, You-Hui;Han, Chi-Hwan;Han, Sang-Do;Chang, Mi-Youn;Sharma, Gaytri.;Park, Youn-Bong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1323-1326
    • /
    • 2005
  • The photoluminescence, electroluminescence and surface properties of ZnS:Cu,Cl phosphor coated by sol-gel process were studies. Na-silicate was used as precursor coating material. pH of solution and the concentration of Na-silicate are the important conditions to obtain the uniform coating on the phosphors. Also, the electroluminescent devices were made with Na-silicate coated phosphor. The spectroscopic characterization is performed by photospectrometer.

  • PDF

Effect of Heat Treatment Temperature and Coating Thickness on Conversion Lens for White LED (백색 LED용 색변환 렌즈의 열처리 온도 및 코팅 두께에 따른 영향)

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.533-538
    • /
    • 2014
  • Today, silicon and epoxy resin are used as materials of conversion lenses for white LEDs on the basis of their good bonding and transparency in LED packages. But these materials give rise to long-term performance problems such as reaction with water, yellowing transition, and shrinkage by heat. These problems are major factors underlying performance deterioration of LEDs. In this study, in order to address these problems, we fabricated a conversion lenses using glass, which has good chemical durability and is stable to heat. The fabricated conversion lenses were applied to a remote phosphor type. In this experiment, the conversion lens for white LED was coated on a glass substrate by a screen printing method using paste. The thickness of the coated conversion lens was controlled during 2 or 3 iterations of coating. The conversion lens fabricated under high heat treatment temperature and with a thin coating showed higher luminance efficiency and CCT closer to white light than fabricated lenses under low heat treatment temperature or a thick coating. The conversion lens with $32{\mu}m$ coating thickness showed the best optical properties: the measured values of the CCT, CRI, and luminance efficiency were 4468 K, 68, and 142.22 lm/w in 20 wt% glass frit, 80 wt% phosphor with sintering at $800^{\circ}C$.

Luminescent Properties of BaSi2O5:Eu2+ Phosphor Film Fabricated by Spin-Coating of Ba-Eu Precursor on SiO2 Glass

  • Park, Je Hong;Kim, Jong Su;Kim, Jong Tae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • Well-crystallized $BaSi_2O_5:Eu^{2+}$ phosphor films were synthesized by heat treatment of spin-coated BaO:Eu on $SiO_2$ glass. We investigated luminescence-structure properties of these phosphor films as a function of heat-treatment temperature. From x-ray diffraction patterns, our $BaSi_2O_5:Eu^{2+}$ phosphor films revealed that (111)- and (204)-crystal planes of $BaSi_2O_5$ crystal were dominantly increased with an increase of heat-treatment temperature. Photoluminescence intensities of $BaSi_2O_5:Eu^{2+}$ phosphor films were increased with amount of these crystal planes. It can be explained that $Eu^{2+}$ ions were stably occupied at specific crystal orientation of $BaSi_2O_5$ crystal, enhancing the luminescent intensities of $BaSi_2O_5:Eu^{2+}$ phosphor films. In addition, our $BaSi_2O_5:Eu^{2+}$ phosphor films had transmittance of 70% at 510 nm,.due to the dense morphology and specific crystallinity of $BaSi_2O_5:Eu^{2+}$ phosphor films.

Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체배리어방전 플라즈마를 이용한 형광체 분말 코팅)

  • Jang, Doo Il;Ihm, Tae Heon;Trinh, Quang Hung;Jo, Jin Oh;Mok, Young Sun;Lee, Sang Baek;Ramos, Henry J.
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.455-462
    • /
    • 2014
  • This work investigated the hydrophobic coating of silicate yellow phosphor powder in the form of divalent europium-activated strontium orthosilicate ($Sr_2SiO_4:Eu^{2+}$) by using an atmospheric pressure dielectric barrier discharge (DBD) plasma with argon as a carrier and hexamethyldisiloxane (HMDSO), toluene and n-hexane as precursors. After the plasma treatment of the phosphor powder, the lattice structure of orthosilicate was not altered, as confirmed by an X-ray diffractometer. The coated phosphor powder was characterized by scanning electron microscopy, fluorescence spectrophotometry and contact angle analysis (CAA). The CAA of the phosphor powder coated with the HMDSO precursor revealed that the water contact angle increased from $21.3^{\circ}$ to $139.5^{\circ}$ (max. $148.7^{\circ}$) and the glycerol contact angle from $55^{\circ}$ to $143.5^{\circ}$ (max. $145.3^{\circ}$) as a result of the hydrophobic coating, which indicated that hydrophobic layers were successfully formed on the phosphor powder surfaces. Further surface characterizations were performed by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry, which also evidenced the formation of hydrophobic coating layers. The phosphor coated with HMDSO exhibited a photoluminescence (PL) enhancement, but the use of toluene or n-hexane somewhat decreased the PL intensity. The results of this work suggest that the DBD plasma may be a viable method for the preparation of hydrophobic coating layer on phosphor powder.