Browse > Article
http://dx.doi.org/10.14478/ace.2014.1009

Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma  

Jang, Doo Il (Department of Chemical and Biological Engineering, Jeju National University)
Ihm, Tae Heon (Department of Chemical and Biological Engineering, Jeju National University)
Trinh, Quang Hung (Department of Chemical and Biological Engineering, Jeju National University)
Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University)
Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
Lee, Sang Baek (Department of Chemical and Biological Engineering, Jeju National University)
Ramos, Henry J. (Plasma Physics Laboratory, National Institute of Physics, University of the Philippines Diliman)
Publication Information
Applied Chemistry for Engineering / v.25, no.5, 2014 , pp. 455-462 More about this Journal
Abstract
This work investigated the hydrophobic coating of silicate yellow phosphor powder in the form of divalent europium-activated strontium orthosilicate ($Sr_2SiO_4:Eu^{2+}$) by using an atmospheric pressure dielectric barrier discharge (DBD) plasma with argon as a carrier and hexamethyldisiloxane (HMDSO), toluene and n-hexane as precursors. After the plasma treatment of the phosphor powder, the lattice structure of orthosilicate was not altered, as confirmed by an X-ray diffractometer. The coated phosphor powder was characterized by scanning electron microscopy, fluorescence spectrophotometry and contact angle analysis (CAA). The CAA of the phosphor powder coated with the HMDSO precursor revealed that the water contact angle increased from $21.3^{\circ}$ to $139.5^{\circ}$ (max. $148.7^{\circ}$) and the glycerol contact angle from $55^{\circ}$ to $143.5^{\circ}$ (max. $145.3^{\circ}$) as a result of the hydrophobic coating, which indicated that hydrophobic layers were successfully formed on the phosphor powder surfaces. Further surface characterizations were performed by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry, which also evidenced the formation of hydrophobic coating layers. The phosphor coated with HMDSO exhibited a photoluminescence (PL) enhancement, but the use of toluene or n-hexane somewhat decreased the PL intensity. The results of this work suggest that the DBD plasma may be a viable method for the preparation of hydrophobic coating layer on phosphor powder.
Keywords
dielectric barrier discharge; plasma; phosphor powder; hydrophobic coating;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Y. Jo, S. C. Cho, K. H. Lee, and H. S. Uhm, Hydrophobic coating of multi-walled carbon nanotubes by using a HMDSO glow plasma under low pressure, J. Korean Phys. Soc., 53, 641-645 (2008).   과학기술학회마을   DOI
2 I. Topala, M. Asandulesa, D. Spridon, and N. Dumitrascu, Hydrophobic coating obtained in atmospheric plasma, IEEE Trans. Plasma Sci., 37, 946-950 (2009).   DOI
3 A. Fridman, Plasma Chemistry, 1st ed., 755-912, Cambridge University Press, NY, USA (2008).
4 H. Kakiuchi, H. Ohmi, T. Yamada, K. Yokoyama, K. Okamura, and K. Yasutake, Silicon oxide coatings with very high rates (>10 nm/s) by hexamethyldisiloxane-oxygen fed atmospheric-pressure VHF plasma: film-forming behavior using cylindrical rotary electrode, Plasma Chem. Plasma Proc., 32, 533-545 (2012).   DOI
5 Z. Fang, Y. Qiu, and E. Kuffel, Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air, J. Phys. D: Appl. Phys., 37, 2261-2266 (2004).   DOI
6 A. David, Y. Puydt, L. Dupuy, S. Descours, F. Sommer, M. D. Tran, and J. Viard, Surface analysis for plasma treatment characterization. In: H. Rauscher, M. Perucca, and G. Buyle (eds.). Plasma Technology for Hyperfunctional Surfaces, 91-132, WILEY-VCH Verlag GmbH & Co. KGaA, Weinneim, Germany (2010).
7 R. Morent, N. Geyter, S. Vlierberghe, P. Dubruel, C. Leys, and E. Schacht, Organic-inorganic behavior of HMDSO films plasma-polymerized at atmospheric pressure, Surf. Coat. Technol., 203, 1366-1372 (2009).   DOI   ScienceOn
8 A. Vogelsang, A. Ohl, R. Foest, K. Schroder, and K.-D. Weltmann, Hydrophobic coatings deposited with an atmospheric pressure microplasma jet, J. Phy. D: Appl. Phys., 43, 485201-485223 (2010).   DOI
9 K. H. Lee, S. C. Cho, S. Y. Jo, H. S. Uhm, C. U. Bang, and D. K. Lee, Hydrophobic coating of $Y_2O_3:Eu$ phosphors by using HMDSO/toluene plasma at low pressure and their wettability, J. Korean Phys. Soc., 53, 631-635 (2008).   과학기술학회마을   DOI
10 K. G. Kostov, R. Y. Honda, L.M.S. Alves, and M.E. Kayama, Characteristics of dielectric barrier discharge reactor for material treatment, Brazilian J. Phys., 39, 322-325 (2009).
11 Q. H. Trinh, S. B. Lee, and Y. S. Mok, Hydrophobic coating of silicate phosphor powder using atmospheric pressure dielectric barrier discharge plasma, AIChE J., 60, 829-838 (2014).   DOI
12 K. Su, J. V. DeGroot, Jr., A. W. Norris, and P. Y. Lo, Siloxane materials for optical applications, Proc. SPIE, 6029, 60291C (2006).
13 J. V. DeGroot, Jr., A. Norris, S. O. Glover, and T. V. Clapp, Highly transparent silicone materials, Proc. SPIE, 5517, 116-123 (2004).
14 Y. Qiao, X. Zhang, X. Ye, Y. Chen, and H. Guo, Photoluminescent properties of $Sr_2SiO_4:Eu^{3+}$ and $Sr_2SiO_4:Eu^{2+}$ phosphors prepared by solid-state reaction method, J. Rare Earths, 27, 323-326 (2009).   DOI   ScienceOn
15 Q. H. Trinh, S. B. Lee, and Y. S. Mok, Hydrophobic coating of silicate phosphor powder using atmospheric pressure dielectric barrier discharge plasma, AIChE J., 60, 829-838 (2014).   DOI
16 D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 13, 1741-1747 (1969).   DOI
17 R. Morent, N. D. Geyter, S. V. Vlierberghe, P. Dubruel, C. Leys, L. Gengembre, E. Schacht, and E. Payen, Deposition of HMDSO based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge, Prog. Org. Coat., 64, 304-310 (2009).   DOI   ScienceOn
18 R. Lamendola, R. d'Agostino, and F. Fracassi, Thin film deposition from Hexamethyldisiloxane fed glow discharges, Plasmas Polym., 2, 147-164 (1997).   DOI
19 Y. J. Yu, J. G. Kim, S. H. Cho, and J. H. Boo, Plasma-polymerized toluene films for corrosion inhibition in microelectronic devices, Surf. Coat. Technol., 162, 161-166 (2003).   DOI   ScienceOn
20 A. Kondyurin, O. Polonskyi, N. Nosworthy, J. Matousek, P. Hlidek, H. Biederman, and M. M. M. Bilek, Covalent attachment and bioactivity of horseradish peroxidase on plasma polymerized hexane coatings, Plasma Proc. Polym., 5, 727-736 (2008).   DOI   ScienceOn
21 M. Goujon, T. Belmonte, and G. Henrion, OES and FTIR diagnostics of $HMDSO/O_2$ gas mixtures for $SiO_x$ deposition assisted by RF plasma, Surf. Coat. Technol., 188-189, 756-761 (2004).   DOI
22 D. I. Jang, J. O. Jo, R. Ko, S. B. Lee, and Y. S. Mok, Plasma-mediated hydrophobic coating on a silicate-based yellow phosphor for the enhancement of durability, Korean Chem. Eng. Res., 51, 214-220 (2013).   과학기술학회마을   DOI
23 J. H. Lee and Y. J. Kim, A correlation between a phase transition and luminescent properties of $Sr_2SiO_4:\;Eu^{2+}$ prepared by a flux method, J. Ceram. Proc. Res., 10, 81-84 (2009).
24 S. Yao, K. Madokoro, C. Fushimi, and Y. Fujioka, Experimental investigation on diesel PM removal using uneven DBD reactors, AIChE J., 53, 1891-1897 (2007).   DOI