Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.6.457

Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property  

Ban, Se-Min (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
Park, Jeong Min (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University)
Choi, Byung-Ki (CQV Co.)
Kang, Kwang-Jung (CQV Co.)
Kang, Myung Chang (Graduate school of convergence science, Pusan National University)
Kim, Dae-Sung (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
Publication Information
Journal of Powder Materials / v.24, no.6, 2017 , pp. 457-463 More about this Journal
Abstract
Nanosized $Gd_2O_3:Eu^{3+}$ red phosphor is prepared using a template method from metal salt impregnated into a crystalline cellulose and is dispersed using a bead mill wet process. The driving force of the surface coating between $Gd_2O_3:Eu^{3+}$ and mica is induced by the Coulomb force. The red phosphor nanosol is effectively coated on mica flakes by the electrostatic interaction between positively charged $Gd_2O_3:Eu^{3+}$ and negatively charged mica above pH 6. To prepare $Gd_2O_3:Eu^{3+}$-coated mica ($Gd_2O_3:Eu/mica$), the coating conditions are optimized, including the stirring temperature, pH, calcination temperature, and coating amount (wt%) of $Gd_2O_3:Eu^{3+}$. In spite of the low luminescence of the $Gd_2O_3:Eu/mica$, the luminescent property is recovered after calcination above $600^{\circ}C$ and is enhanced by increasing the $Gd_2O_3:Eu^{3+}$ coating amount. The $Gd_2O_3:Eu/mica$ is characterized using X-ray diffraction, field emission scanning electron microscopy, zeta potential measurements, and fluorescence spectrometer analysis.
Keywords
Red phosphor; $Gd_2O_3:Eu^{3+}$coated Mica flake; Security pigment; Luminescent property;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 D. H. Kang and J. H. Hong: J. Korean. Soc. Manuf. Technol. Eng., 21 (2012) 15.
2 B. K. Gupta, D. Haranath, S. Saini, V. N. Singh and V. Shanker: Nanotechnology, 21 (2010) 1.
3 K. Y. Jung and W. H. Kim: Korean Chem. Eng. Res., 53 (2015) 620.   DOI
4 K. U. Kim, S. H. Choi, H. K. Jung and S. Nahm: Korean J. Mater. Res., 18 (2008) 159.   DOI
5 T. Hirai, T. Hirano and I. Komasawa: J. Colloid Interface Sci., 253 (2002) 62.   DOI
6 Y. M. Moon, S. H. Choi, H. K. Jung and S. H. Lim: Korean J. Mater. Res., 18 (2008) 511.   DOI
7 J. M. Park, S. M. Ban, K. Y. Jung, B. K. Chol, K. J. Kang and D. S. Kim: Korean J. Mater. Res., 27 (2017) 534.   DOI
8 S. Wu, A. Sun, W. Xu, Q. Zhang, F. Zhai, P. Logan and A. A. Volinsky: J. Magn. Magn. Mater., 324 (2012) 3899.   DOI
9 S. Maenosono, T. Okubo and Y. Yamaguchi: J. Nanopart. Res., 5 (2003) 5.   DOI
10 D. Wang and G. P. Bierwagen: Prog. Org. Coat., 64 (2009) 327.   DOI
11 K. S. Lee, K. H. Kang, J. H. Lee and D. K. Lee: J. Korean Oil Chem. Soc., 30 (2013) 233.   DOI
12 H. Y. Jung, H. J. Lee, S. H. Lee, H. M. Lim, B. K. Chol, K. J. Kang, J. S. Choi and D. S. Kim: Korean J. Mater. Res., 23 (2013) 672.   DOI
13 K. Y. Jung, J. C. Lee, D. S. Kim, B. K. Choi and W. J. Kang: J. Lumin., 192 (2017) 1313.   DOI
14 K. H. Lee, Y. J. Bae and S. H. Byeon: Intech, 402 (2010) 345.
15 K. H. Lee, Y. J. Bae and S. H. Byeon: Bull. Korean Chem. Soc., 29 (2008) 2161.   DOI
16 N. M. Maalej, A. Qurashi, A. A. Assadi, R. Maalej, M. N. Shaikh, M. Ilyas and M. A. Gondal: Nanoscale Res. Lett., 10 (2015) 215.   DOI
17 J. Yang, C. Li, Z. Cheng, X. Zhang, Z. Quan, C. Zhang and J. Lin: J. Phys. Chem. C, 111 (2007) 18148.   DOI
18 H. J. Lee, S. M. Ban, K. Y. Jung, B. K. Chol, K. J. Kang and D. S. Kim: Korean J. Mater. Res., 27 (2017) 100.   DOI