• Title/Summary/Keyword: Phosphoinositide 3-Kinase (PI3-Kinase)

Search Result 83, Processing Time 0.029 seconds

Effect of Epigallocatechin Gallate on Phosphoinositide 3-kinase/Akt and Glycogen Synthase Kinase-3 Pathway in Oxidative-stressed N18D3 Cells Following $H_2O_2$ Exposure (산화성 손상을 받은 N18D3세포에서 Epigallocatechin gallate가 Phosphoinositide 3-kinase/Akt 및 Glycogen synthase kinase-3경로에 미치는 효과)

  • Koh, Seong Ho;Kwon, Hyug Sung;Oh, Hwa Soon;Oh, Jae Ho;Park, Ynun Joo;Kim, Jun Gyou;Kim, Ki Sok;Kim, Yang Soon;Yang, Ki Hwa;Kim, Seung U.;Kim, Seung H.;Jung, Hai Kwu
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 2003
  • Neurodegenerative disorders are associated with apoptosis as a causing factor or an inducer. On the other hand, it has been reported that epigallocatechin gallate (EUG), one of antioxidants and flavonoids, and z-VAD-fmk, a nonselective caspase inhibitor, suppress oxidative-radical-stress-induced apoptosis. However, it is not yet known what is the effects of EGCG and z-VAD-fmk on the apoptotic pathway is through phosphoinositide 3-kinase (PI3K), Akt and glycogen synthase kinase-3 (GSK-3) as well as mitochondria, caspase-3 and poly (ADP-ribose) polymerase (PARP). We investigated the effects of EGCG by using $H_2O_2$ treated N18D3 cells, mouse DRG hybrid neurons. Methods: Following 30 min $100\;{\mu}m\;H_2O_2$ exposure, the viability of N18D3 cells (not pretreated vs. EGCG or z-VAD-fmk pretreated) was evaluated by using MTT assay. The effect of EGCG on immunoreactivity (IR) of cytochrome c, caspase-3, PARP, PI3K/Akt and GSK-3 was examined by using Western blot, and was compared with that of z-Y4D-fmk. Results: EGCG or z-VAD-fmk pretreated N18D3 cells showed increased viability. Dose-dependent inhibition of caspase-3 activation accompanied by PARP cleavage were demonstrated by pretreatment of both agents. However, inhibition of cytochrome c release was only detected in EGCG pretreated N18D3 cells. On the pathway through PI3K/Akt and GSK-3, however, the result of Western blot in EGCG pretreated N18D3 cells showed decreased IR of Akt and GSK-3 and increased IR of p85a PI3K, phosphorylated Akt and GSK-3, and contrasted with that in z-VAD-fmk pretreated N18D3 cells showing no changes on each molecule. Conclusion: These data show that EGCG affects apoptotic pathway through upstream signal including PI3K/Akt and GSK-3 pathway as well as downstream signal including cytochrome c and caspase-3 pathway. Therefore, these results suggest that EGCG mediated activation of PI3K/Akt and inhibition GSK-B could be new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury.

  • PDF

Effect of Treadmill Exercise on Modulation of Vascular Endothelial Growth Factor Expression in the Retina of Diabetic Rats (당뇨유발 흰쥐에서 트레드밀 운동이 망막의 혈관내피성장인자 발현에 미치는 영향)

  • Kim, Dae-Young;Kim, Tae-Woon;Kim, Chang-Ju;Jung, Sun-Young
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.3
    • /
    • pp.363-372
    • /
    • 2012
  • One of the major ocular complications of diabetes mellitus(DM) is retinopathy, which is characterized by increased neovascularization and neural degeneration in the retina. In the present study, we investigated the effects of treadmill exercise on retinopathy in the rats with DM. Thirty-two male Sprague-Dawley rats were divided into four groups(n = 8 in each group): control group, exercise group, DM-induction group, and DM-induction and exercise group. DM was induced by intraperitoneal injection of streptozotocin. The rats in the exercise groups were made to run on the treadmill for 30 min five times per a week, during 12 weeks. The expressions of phosphoinositide 3-kinase(PI3K), phospho-protein kinase B(pAkt), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor(VEGF) in the retina were determined using western blot analysis and immunohistochemistry. In the present results, the expressions of PI3K, pAkt, HIF-1α, and VEGF in the retina of the diabetic rats were increased. Treadmill exercise suppressed HIF-1α and VEGF expressions through inhibition of PI3K/pAkt pathway in the diabetic rats. These results suggest that treadmill exercise may ameliorate the progression of diabetes-induced retinopathy by inhibiting neovascularization in the retina.

The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

  • Jeon, Bo Ra;Kim, Su Jung;Hong, Seung Bok;Park, Hwa-Jin;Cho, Jae Youl;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.279-285
    • /
    • 2015
  • Background: Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng's therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods: The platelet aggregation was induced by collagen, the ligand of integrin ${\alpha}_{II}{\beta}_I$ and glycoprotein VI. The crude saponin's effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin ${\alpha}_{II}b{\beta}_{III}$ was examined by fluorocytometry. Results: CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed $[Ca^{2+}]_i$ mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin ${\alpha}_{IIb}{\beta}_3$. Conclusion: Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function.

Novel p104 protein regulates cell proliferation through PI3K inhibition and p27Kip1 expression

  • Han, Seung-Jin;Lee, Jung-Hyun;Choi, Ki-Young;Hong, Seung-Hwan
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • The protein p104 was first isolated as a binding partner of the Src homology domain of phospholipase C$\gamma$1, and has been shown to associate with p85$\alpha$, Grb2. The ectopic expression of p104 reduced cellular growth rate, which was also achieved with the overexpression of only the proline-rich region of p104. The proline-rich region of p104 has been found to inhibit the colony formation of platelet-derived growth factor BB-stimulated NIH3T3 cells and MCF7 cancer cells on soft agar. Mutagenesis analysis showed that the second and third proline-rich regions are essential for growth control, as well as for interaction with p85$\alpha$. Overexpression of p104 increased the level of the cyclin-dependent kinase inhibitor, $p27^{Kip1}$, and inhibited the activity of phosphoinositide 3-kinase (PI3K). In summary, p104 interacts with p85$\alpha$ and is involved in the regulation of $p27^{Kip1}$ expression for the reduction of cellular proliferation.

Anti-inflammatory Effects of Cheongnoimyungshin-hwan in Microglia Cells (미세아교세포의 염증반응에 미치는 청뇌명신환의 영향)

  • Im, Yong-Gyun;Choi, Yung-Hyun;Hwang, Won-Deok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.25 no.4
    • /
    • pp.423-434
    • /
    • 2014
  • Objectives: Activated microglia cells play an important role in inflammatory responses in the central nervous system (CNS) which are involved in neurodegenerative diseases. We attempted to determine the anti-inflammatory effects of Cheongnoimyungshin-hwan (CNMSH) in microglia cells. Methods: We examined the effect of CNMSH on the inflammatory responses in BV2 microglia cells induced by lipopolysaccharide (LPS) and explored the mechanism underlying the action of CNMSH. Results: BV2 cells treated with LPS showed an up-regulation of nitric oxide (NO), prostaglandin $PGE_2(PGE_2)$ and interleukin $1{\beta}(IL-1{\beta})$ release, whereas CNMSH suppressed this up-regulation. CNMSH inhibited the induction of COX-2, iNOS and $IL-1{\beta}$ proteins in LPS-treated BV2 cells and blocked the LPS-induced phosphorylation and nuclear translocation of nuclear factor ${\kappa}B(NF-{\kappa}B$). Furthermore, CNMSH attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase and p38 mitogen activated protein kinase (MAPK), as well as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, but did not inhibit the LPS-induced phosphorylation of c-Jun amino terminal kinase. Conclusions: These results suggest that the inhibitory effect of CNMSH on the LPS-induced production of inflammatory mediators and cytokines in BV2 cells is associated with the suppression of the $NF-{\kappa}B$ and PI3KAkt signaling pathways.

Pharmacophore Based Screening and Molecular Docking Study of PI3K Inhibitors

  • Rupa, Mottadi;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.41-61
    • /
    • 2016
  • Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Phosphoinositide 3-kinases (PI3Ks) play important role in Non-Small Cell Lung Cancer. PI3Ks constitute a lipid kinase family which modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. Herein, we describe the ligand based pharmacophore combined with molecular docking studies methods to identify new potent PI3K inhibitors. Several pharmacophore models were generated and validated by Guner-Henry scoring Method. The best models were utilized as 3D pharmacophore query to screen against ZINC database (Chemical and Natural) and the retrieved hits were further validated by fitness score, Lipinski's rule of five. Finally four compounds were found to have good potential and they may act as novel lead compounds for PI3K inhibitor designing.

Gardenia jasminoides Exerts Anti-inflammatory Activity via Akt and p38-dependent Heme Oxygenase-1 Upregulation in Microglial Cells (소교세포에서 heme oxygenase-1 발현 유도를 통한 치자(Gardenia jasminoides)의 항염증 효과)

  • Song, Ji Su;Shin, Ji Eun;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Died Gardenia jasminoides fruit is used as a dye in the food and clothes industries in Asia. The present study investigated the anti-inflammatory effects of aqueous extract of G. jasminoides fruits (GJ) in BV-2 microglial cells. GJ inhibited lipopolysaccharide-induced nitric oxide (NO) secretion, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species production, without affecting cell viability. Furthermore, GJ increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner. Moreover, the inhibitory effect of GJ on iNOS expression was abrogated by small interfering RNA-mediated knock-down of HO-1. In addition, GJ induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. GJ-mediated expression of HO-1 was suppressed by LY294002, a phosphoinositide 3-kinase (PI-3K) inhibitor, and SB203580, a p38 kinase inhibitor, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 or c-Jun N-terminal kinase (JNK) inhibitor SP600125. GJ also enhanced the phosphorylation of Akt and p38. These results suggest that GJ suppresses the production of NO, a pro-inflammatory mediator, by inducing HO-1 expression via PI-3K/Akt/p38 signaling. These findings illustrate a novel molecular mechanism by which extract from G. jasminoides fruits inhibits neuroinflammation.

Antiplatelet activity of esculetin through the down-regulation of PI3K/MAPK pathway

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.317-322
    • /
    • 2021
  • Among the different cardiovascular disorders (CVDs), the activation of platelets is a necessary step. Based on this knowledge, therapeutic treatments for CVDs that target the disruption of platelet activation are proving to be worthwhile. One such substance, a bioactive 6,7-dihydroxy derived from coumarin, is 6,7-Dihydroxy-2H-1-benzopyran-2-one (esculetin). This compound has demonstrated several pharmacological effects on CVDS as well as various other disorders including diabetes, obesity, and renal failure. In various reports, esculetin and its effect has been explored in experimental mouse models, human platelet activation, esculetin-inhibited collagen, and washed human platelets exhibiting aggregation via arachidonic acid. Yet, esculetin affected aggregation with agonists like U46619 or thrombin in no way. This study investigated esculetin and how it affected human platelet aggregation activated through U46619. Ultimately, we confirmed that esculetin had an effect on the aggregation of human platelets when induced from U46619 and clarified the mechanism. Esculetin interacts with the downregulation of both phosphoinositide 3-kinase/Akt and mitogen-activated protein kinases, important phosphoproteins that are involved in activating platelets and their signaling process. The effects of esculetin reduced TXA2 production, phospholipase A2 activation, and platelet secretion of intracellular granules (ATP/serotonin), ultimately causing inhibition of overall platelet aggregation. These results clearly define the effect of esculetin in inhibiting platelet activity and thrombus formation in humans.

Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

  • Yu, Wan-Guo;He, Hao;Yao, Jing-Yun;Zhu, Yi-Xiang;Lu, Yan-Hua
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.549-556
    • /
    • 2015
  • Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key "late" proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKC${\alpha}$). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKC${\alpha}$ signaling pathway.

Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과)

  • Chung-Mu Park;Hyun An;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.