DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Cheongnoimyungshin-hwan in Microglia Cells

미세아교세포의 염증반응에 미치는 청뇌명신환의 영향

  • Im, Yong-Gyun (Department of Oriental Medicine Graduate School, Dong-Eui University) ;
  • Choi, Yung-Hyun (Department of Oriental Medicine Graduate School, Dong-Eui University) ;
  • Hwang, Won-Deok (Department of Oriental Medicine Graduate School, Dong-Eui University)
  • 임용균 (동의대학교 한의과대학 대학원) ;
  • 최영현 (동의대학교 한의과대학 대학원) ;
  • 황원덕 (동의대학교 한의과대학 대학원)
  • Received : 2014.12.05
  • Accepted : 2014.12.18
  • Published : 2014.12.30

Abstract

Objectives: Activated microglia cells play an important role in inflammatory responses in the central nervous system (CNS) which are involved in neurodegenerative diseases. We attempted to determine the anti-inflammatory effects of Cheongnoimyungshin-hwan (CNMSH) in microglia cells. Methods: We examined the effect of CNMSH on the inflammatory responses in BV2 microglia cells induced by lipopolysaccharide (LPS) and explored the mechanism underlying the action of CNMSH. Results: BV2 cells treated with LPS showed an up-regulation of nitric oxide (NO), prostaglandin $PGE_2(PGE_2)$ and interleukin $1{\beta}(IL-1{\beta})$ release, whereas CNMSH suppressed this up-regulation. CNMSH inhibited the induction of COX-2, iNOS and $IL-1{\beta}$ proteins in LPS-treated BV2 cells and blocked the LPS-induced phosphorylation and nuclear translocation of nuclear factor ${\kappa}B(NF-{\kappa}B$). Furthermore, CNMSH attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase and p38 mitogen activated protein kinase (MAPK), as well as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, but did not inhibit the LPS-induced phosphorylation of c-Jun amino terminal kinase. Conclusions: These results suggest that the inhibitory effect of CNMSH on the LPS-induced production of inflammatory mediators and cytokines in BV2 cells is associated with the suppression of the $NF-{\kappa}B$ and PI3KAkt signaling pathways.

Keywords

References

  1. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129: 154-69. https://doi.org/10.1111/j.1365-2567.2009.03225.x
  2. Griffiths MR, Gasque P, Neal JW. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J Neuropathol Exp Neurol. 2009;8:217-26.
  3. O'Brien K, Fitzgerald DC, Naiken K, Alugupalli KR, Rostami AM, Gran B. Role of the innate immune system in autoimmune inflammatory demyelination. Curr Med Chem. 2008;15:1105-15. https://doi.org/10.2174/092986708784221458
  4. L. Meda, M.A. Cassatella, G.I. Szendrei, L. Otvos Jr., P. Baron, M. Villalba, D. Ferrari, F. Rossi. Activation of microglial cells by ${\beta}$-amyloid protein and interferon-${\gamma}$. Nature. 1995;373:647-50.
  5. P. Dandona, H. Ghanim, A. Chaudhuri, S. Dhindsa, S.S. Kim. Macronutrient intake induces oxidative and inflammatory stress: potential relevance to atherosclerosis and insulin resistance. Experiment and Molecular Medicine. 2010;42:245-53. https://doi.org/10.3858/emm.2010.42.4.033
  6. F. Gonzalez-Scarano, G. Baltuch. Microglia as mediators of inflammatory and degenerative diseases. Annual Review of Neuroscience. 1999;22:219-40. https://doi.org/10.1146/annurev.neuro.22.1.219
  7. Heo J. Dong ui bo gam. Seoul: Yeogang Publisher. 2001: 1750.
  8. Bours V, Bonizzi G, Bentires-Alj M, Bureau F, Piette J, Lekeux P, Merville M. NF-kappaB activation in response to toxical and therapeutical agents: role in inflammation and cancer treatment. Toxicology. 2000;16:27-38.
  9. Brynskov J, Nielsen OH, Ahnfelt-Rønne I, Bendtzen K. Cytokines (immunoinflammatory hormones) and their natural regulation in inflammatory bowel disease (Crohn's disease and ulcerative colitis): a review. Dig Dis. 1994; 12:290-304. https://doi.org/10.1159/000171464
  10. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;23:487-501.
  11. Mariotto S, Suzuki Y, Persichini T, Colasanti M, Suzuki H, Cantoni O. Cross-talk between NO and arachidonic acid in inflammation. Curr Med Chem. 2007;14:1940-44. https://doi.org/10.2174/092986707781368531
  12. Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss- Coray T, Mark RJ, Mucke L. Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer's disease. Brain Res Rev. 1997;23:47-61. https://doi.org/10.1016/S0165-0173(96)00014-8
  13. Lee SJ, Lee S. Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy. 2000;1:181-91.
  14. Saklatvala J, Dean J, Finch A. Protein kinase cascades in intracellular signalling by interleukin-I and tumour necrosis factor. Biochem Soc Symp. 1999;64:63-77.
  15. Arbabi S, Maier RV. Mitogen-activated protein kinases. Crit Care Med. 2002;30:74-9.
  16. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807-69.
  17. Love S. Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:267-82. https://doi.org/10.1016/S0278-5846(03)00022-8
  18. Saponaro C, Cianciulli A, Calvello R, Dragone T, Iacobazzi F, Panaro MA. The PI3K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacol Immunotoxicol. 2012;34:858-65. https://doi.org/10.3109/08923973.2012.665461
  19. McGeer PL, McGeer EG, The inflammatory response system of brain: implication for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 1995;2:195-218.
  20. McGeer PL, Yasojima K, McGeer EG. Inflammation in Parkinson's disease. Adv. Neurol. 2001;86:83-89.
  21. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 2003;304:1-7. https://doi.org/10.1124/jpet.102.035048
  22. Choi MI, Lee HJ, Yun JB, Kim JY, Kang KS, Shin CG, JU YS. The approach of properties-flavours thoery and the study of morphological standard in Corni fructus. The Korea Association of Herbology. 2006;21(2):109-19.
  23. Jeon JR, Lee JS, Lee CH, Kim JY, Kim SD, Nam DH. Effect of ethanol extract of dried Chinese yam(Dioscorea batatas) flour containing dioscin on gastrointestinal function in rat model. Arch pharm Res 2006;29(5):348-53. https://doi.org/10.1007/BF02968583
  24. Nishimura N, Tanabe H, Yamamoto T, Fukushima M. Raw Chinese yam (Dioscorea opposita) promotes cecal fermentation and reduces plasma non-HDL cholesterol concentration in rats. J Nutr Sci Vitaminol (Tokyo). 2011; 57(5):340-7. https://doi.org/10.3177/jnsv.57.340
  25. Hu YS, Lee SG, Chai YG, Jung KH, Kim JH. Gene expression profiling of SH-SY5Y cells in neuroprotective effect of total ginsenosides on H2O2 induced neurotoxicity. J. of Oriental Neuropsychiatry. 2005;18(1):95-110.
  26. Kin JS. Mechanism of cytotoxicity indused by 2,2',5,5'-tet rachlorobiphenyl in human neuronal SK-N-MC cells and protective effect of Korean Ginseng. College or Oriental medicine, Graduate school of Wonkwang Univ. 2001.
  27. Jeon BH, Kang, IH, Moon BS. Effect of Korean red ginseng on oxidant-induced neurotoxicity in cultured bovine oligodendrocytes. Korean J. Oriental Pathology. 1998; 12(1):96-101.
  28. Ko JM, Lee SH, Baek YH, Choi DY. Stimulatory effect of Cinnamomum cassia extract on angiogenesis through regulation of VEGF. The journal of Korean Acupuncture & Moxibustion Society. 2009;26(1):153-62.
  29. Kim HS, Roh JD. Effects of Cinnamomi cortex pharmacopuncture on LPS-induced inflammatory response in macrophage. The journal of Korean Acupuncture & Moxibustion Society. 2012;29(1):15-24.
  30. Zhu Z, Shen Y, Zhang M, Chen G, Ma S. Pharmacological study on spleen-stomach warming and analgesic actions of Aconitum carmichaeli Debx. Zhongguo Zhong Yao Za Zhi. 1992;17(4):238-41.
  31. Kim MR, Lim EM. Effects of Arillus water extract on inflammatory response and cytokines in mouse macrophage cells. J Korean Obstet Gynecol. 2014;27(2):1-11. https://doi.org/10.15204/jkobgy.2014.27.2.001
  32. Oh HS, Kim BW. Anti-inflammatory of the water extract of Polygala tenuifolia wild. Korean J Orient Int Med 2013; 34(2):204-14.
  33. Kim YC, Lee EH, Lee YM, Kim HK, Song BK, Lee EJ, Kim HM. Effect of the aqueous extract of Aquilaria agallocha stems on the immediate hypersensitivity reactions. J Ethnopharmacol. 1997;58(1):31-8. https://doi.org/10.1016/S0378-8741(97)00075-5
  34. Kong QX, Wu ZY, Chu X, Liang RQ, Xia M, Li L. Study on the anti-cerebral ischemia effect of borneol and its mechanism. Afr J Tradit Complement Altern Med. 2013; 11(1):161-4.
  35. Levi G, Minghetti L, Aloisi F. Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie 1998;80:899-904. https://doi.org/10.1016/S0300-9084(00)88886-0
  36. Giovannini MG, Scali C, Prosperi C, Bellucci A, Pepeu G, Casamenti G. Experimental brain inflammation and neurodegeneration as model of Alzheimer's disease: protective effects of selective COX-2 inhibitors. Int. J. Immunopathol. Pharmacol. 2003;16:31-40.
  37. Del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000;10(1):95-112.
  38. Iadecola C, Ross ME. Molecular pathology of cerebral ischemia: delayed gene expression and strategies for neuroprotection. Ann N Y Acad Sci. 1997;19;835:203-17. https://doi.org/10.1111/j.1749-6632.1997.tb48631.x
  39. Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 1999;19:3440-7.
  40. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci. Lett. 1994;172:151-4. https://doi.org/10.1016/0304-3940(94)90684-X
  41. De Nardin E. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Ann. Periodontol. 2001;6:30-40. https://doi.org/10.1902/annals.2001.6.1.30
  42. Viscido A, Aratari A, Maccioni F, Signore A, Caprilli R. Inflammatory bowel diseases: clinical update of practical guidelines. Nucl. Med. Commun. 2005;26:649-55. https://doi.org/10.1097/01.mnm.0000169205.21377.6a
  43. Lee JW, Lee MS, Kim TH, Lee HJ, Hong SS, Noh YH, Hwang BY, Ro JS, Hong JT. Inhibitory effect of inflexinol on nitric oxide generation and iNOS expression via inhibition of NF-kappaB activation. Mediators Inflamm. 2007;2007: 93148.
  44. Baima ET, Guzova JA, Mathialagan S, Nagiec EE, Hardy MM, Song LR, Bonar SL, Weinberg RA, Selness SR, Woodard SS. Chrencik J, Hood WF, Schindler JF, Kishore N, Mbalaviele G, Novel insights into the cellular mechanisms of the anti-inflammatory effects of NF-${\kappa}B$ essential modulator binding domain peptides. J Biol Chem. 2010;285:13498-506. https://doi.org/10.1074/jbc.M109.099895
  45. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS Jr, Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol. Cell. Biol. 2000;20:1626-38. https://doi.org/10.1128/MCB.20.5.1626-1638.2000
  46. Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, Ha J, Yoon KS, Kim SS, Kang I. Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of PI3-kinase/Akt and NF-kappaB activation in murine BV2 microglial cells. Neurosci. Lett. 2006;396:1-6. https://doi.org/10.1016/j.neulet.2005.11.004
  47. Wei J, Feng J. Signaling pathways associated with inflammatory bowel disease. Recent Pat. Inflamm. Allergy Drug Discov. 2010;4:105-17. https://doi.org/10.2174/187221310791163071
  48. Baldwin Jr AS. The NF-kappaB and I-kappaB proteins: new discoveries and insights. Ann. Rev. Immunol. 1996;14:649-83. https://doi.org/10.1146/annurev.immunol.14.1.649
  49. Moon DO, Choi YH, Kim ND, Park YM, Kim GY. Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol. 2007;7:506-14. https://doi.org/10.1016/j.intimp.2006.12.006
  50. Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 1999;11:211-8. https://doi.org/10.1016/S0955-0674(99)80028-3
  51. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911-2. https://doi.org/10.1126/science.1072682
  52. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta. 2010;1802:396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
  53. Borsello T, Forloni G. JNK signalling: a possible target to prevent neurodegeneration. Curr. Pharm. Des. 2007;13: 1875-86. https://doi.org/10.2174/138161207780858384

Cited by

  1. 인체 신경세포에서 청뇌명신환(淸腦明神丸)의 산화적 스트레스에 대한 세포보호 효과 vol.25, pp.1, 2017, https://doi.org/10.14374/hfs.2017.25.1.51