• Title/Summary/Keyword: Phosphogypsum (PG)

Search Result 19, Processing Time 0.023 seconds

Environmental Impact of Phosphogypsum on the Ecotoxicity of A. salina, D. magna, O. latipes, and S. capricornutum

  • Park, Soo-Ho;Han, Bing;Lee, Woo-Bum;Kim, Jongo
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권2호
    • /
    • pp.15-21
    • /
    • 2016
  • The objective of this study was to determine the feasibility of recycled phosphogypsum (PG) as an embankment material with soil by performing batch and column ecotoxicity experiments. A. salina, D. magna, O. latipes and S. capricornutum were selected for the experiment. The effective concentration (EC50) of D. magna was the lowest value, 1.29 mg/L. The survival rates of A. salina, D. magna and O. latipes were more than 90% in the presence of PG leachate in the column test. The toxicity unit (TU) for the organisms was less than 1, indicating that no significant ecotoxicity effect was found. These findings suggested that PG could be recycled for use as an embankment and landfill material with soil.

재활용 인산석고의 조류 및 물벼룩에 미치는 생물독성 평가 (Ecotoxicity Evaluation of Phosphogypsum Recycle for Algae and Daphnia magna)

  • 박수호;김종오
    • 대한환경공학회지
    • /
    • 제34권8호
    • /
    • pp.528-532
    • /
    • 2012
  • 국내에서 발생되는 인산석고를 매립성토재로 활용 가능성과 수중생물인 담수조류, 해조류 및 물벼룩에 미치는 생물독성을 평가하였다. 인산석고 혼합에 따라 담수조류의 비성장속도는 대체적으로 해조류에 비해 높았으며, PG30 조건에서는 담수조류 성장이 1.7배 정도 컸다. 물벼룩의 경우는 PG50에서는 다소의 영향이 있는 것으로 나타났으나, 평균 독성값(TU)값이 0.3으로 독성기준치 1 이하로 나타나 인산석고에서 발생하는 침출수의 영향이 거의 없는 것으로 여겨진다. 본 연구를 통하여 인산석고를 일반토사와 혼합할 경우, 환경학적으로 폐기물 재활용기준을 만족하고 있는 것으로 나타났으며 3가지 생물의 독성 실험결과 PG30 조건에서 매립성토재로 사용할 경우 생물독성의 영향이 미미할 것으로 판단된다.

결합재의 종류에 따른 인산석고를 다량 함유한 경화체의 강도 특성 (The Strength Properties of Cement Matrix containing High-Volume Wasted Phosphogypsum with Binder Types)

  • 문경주;형원길;박원춘;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.881-884
    • /
    • 2006
  • Wasted phosphogypsum is a by-product from the phosphoric acid process of manufacturing fertilizers. It consists mainly of $CaSO_4{\cdot}2H_2O$ and contains some impurities. The purpose of this study is to utilize wasted phosphogypsum into an admixture for concrete products cured by steam This paper is to investigate the strength properties of cement composites containing high volume phosphogypsum. The cement composites were composed of OPC, phosphogypsum, fly-ash and granulated blast-furnace slag with activators. As a result, the strength of cement composites containing high volume wasted phosphogypsum were shown high level when granulated blast-furnace slag was mixed. Therefore, PG could be used as a steam curing admixture for concrete 2th production with reduction of OPC.

  • PDF

Phosphogypsum purification for plaster production: A process optimization using full factorial design

  • Moalla, Raida;Gargouri, Manel;Khmiri, Foued;Kamoun, Lotfi;Zairi, Moncef
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.36-45
    • /
    • 2018
  • The phosphogypsum (PG) is a byproduct of the phosphate fertilizers manufacture. The world production estimated to 200 million tons per year induces environmental threats and storage problems, which requires strict policies to limit pollution and encourage its valorization. This paper presents a purification process of the crude PG including treatment with a diluted sulfuric acid, floatation, filtration and washing. The purified PG is used to produce plaster. The process optimization was conducted using a full factorial design. The significant factors considered in the experimental study are temperature ($X_1$), volume of sulfuric acid solution ($X_2$) and PG quantity ($X_3$). The main effects and interaction effects of these factors on the responses of the % $P_2O_5$, % F, Total Organic Carbon (TOC) ($mg{\cdot}kg^{-1}$) and pH were analyzed. The optimum conditions for $X_1$, $X_2$ and $X_3$ were found to be $60^{\circ}C$, 3 L and 1 kg, respectively and the optimized pH values was found to be 6.2. Under these conditions, 60% of $P_2O_5$, 95% of Fluorine and 98% of TOC were removed from PG. The predicted values were found approximately the same as the experimental ones. The plaster produced with purified PG was found to have similar properties to that produced from natural gypsum.

Tunisian phosphogypsum tailings: Assessment of leaching behavior for an integrated management approach

  • Zmemla, Raja;Sdiri, Ali;Naifar, Ikram;Benjdidia, Mounir;Elleuch, Boubaker
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.345-355
    • /
    • 2020
  • This study has been carried out to evaluate the leaching behavior of Tunisian phosphogypsum (PG) tailings in Skhira city (southern Tunisia). Two PG samples, including old and freshly deposited samples, were characterized in terms of physical, geotechnical, mechanical, chemical and mineralogical properties. Special attention was paid to their leaching behavior when subjected to standard leaching tests. Our results indicated that both samples are mainly composed of more than 31.85% CaO and 31.4% SO3, indicating the predominance of gypsum. This was further confirmed by XRD patterns that revealed the presence of characteristic reflections of gypsum, brushite, quartz and Maladrite. Compressive strength after 90 d exceeded 769 kPa, but still lower than that of natural sand (1,800 kPa). Leaching test was proposed as an appropriate method to determine the released contaminants from PG. The obtained results showed that Fluorine and Phosphorus are the most released elements from PG with 40 and 30%, respectively. The released Se, Cd, and Zn were the only trace elements that exceeded the threshold limits. It seemed that leached element concentrations were independent aging or particle size of the PG. Based on the assessment of leaching behavior, an integrated management approach of the PG deposits was proposed.

부산석고 시용에 의한 밭 토양 특성과 마늘의 수량 및 품질에 미치는 영향 (Effects of Phosphogypsum Application on Field Soil Properties and Yield and Quality of Garlic (Allium sativum L.))

  • 김영남;조주영;윤영은;최현지;정미선;이미나;김권래;이용복
    • 한국환경농학회지
    • /
    • 제40권1호
    • /
    • pp.33-39
    • /
    • 2021
  • BACKGROUND: Globally, large amounts of phosphogypsum (PG), which is a by-product of the phosphate fertilizer production, is deposited in open areas. As PG contains calcium, phosphate, and sulphate, it can be used as a soil amendment in farmlands. This study was conducted to investigate the effects of PG application on properties of field soil and yield and quality of garlic (Allium sativum L.), and to seek appropriate level of PG application into the field. METHODS AND RESULTS: This experiment was conducted by applying PG at four different levels that were adjusted based on 65% calcium base saturation in the field soil: 0% (control), 50% (PG50, 100 kg/10a), 100% (PG100, 200 kg/10a), and 150% (PG150, 300 kg/10a). Following cultivation, soil electrical conductivity (EC), organic matter, available P and exchangeable Ca increased, whilst soil pH decreased. With increase in PG application level, soil EC and exchangeable Ca increased. PG application increased concentrations of water soluble Ca and SO4 across the soil profile, especially in PG150. The highest yield of garlic was found in PG100 treatment. The plant's uptake for N, P, Ca, and S increased by PG applications, but that for K decreased. Moreover, concentrations of S-related amino acids such as cysteine and methionine in garlic increased by PG applications. The increased content of nutrients and amino acids with PG supply might improve yield, quality, and favor of the crop. CONCLUSION: Overall, PG application at 200 kg/10a into a field had the best effect on improving soil fertility as well as yield and quality of garlic. Further studies are required to maximize efficiencies of PG supply in soil management and production of various crops.

하소 온도가 다른 페인산석고를 혼입한 시멘트 모르타르의 압축강도 특성 (Compressive Strength of Cement mortar Admixed with Waste Phosphogypsum Calcination with various Temperature)

  • 안양진;윤성진;문경주;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.228-231
    • /
    • 2004
  • The purpose of this study evaluates possibilities of waste phosphogypsum into concrete by steam curing admixture. The waste phosphogypsums were classified into 4 forms(Dihydrate, $\beta-Hemihydrate$, III-Anhydrite and II-Anhydrite) which were changed to in low temperature of calcination. Also, various admixtures were made of waste phosphogypsum(PG) and pozollanic fine powderers (Fly-ash, Blast Furnace Slag), and the basic properties of the cement mortars incorporating with these admixtures were examined and analyzed under a verity of experimental conditions. As a result, III-Anhydrite, these is similar to II-Anhydrite from compressive strength and are great in the effect of strength improvement. also, it was proved that specimens made on type III-Anhydrite of waste phosphogypsum and blast furnace slag increased on the compressive strength of cement mortar. Therefore, III-Anhydrite phosphogypsum calcined at lower temperature could be used as steam curing admixture for concrete 2th production.

  • PDF

부산물 석고를 이용한 산불피해 지역 토양유실 방지 (Effect of By-product Gypsum on Soil Erosion at Burned Forest Land)

  • 김계훈;정창욱
    • 한국환경복원기술학회지
    • /
    • 제3권4호
    • /
    • pp.52-59
    • /
    • 2000
  • This study was carried out to find out effect of by-product gypsum on reducing soil erosion at the sloping burned area at Sampo-ri, Gosung-gun in Kangwon-province during the period between June 28 and Sept. 30, 2000. Four experimental plots ($1.2m{\times}10m$) were prepared at the study area with slopes $15^{\circ}{\sim}18^{\circ}$ where forest fire took place twice during last 4 years. Phosphogypsum (PG) was applied to the soils of the 4 plots at the rates of 0 (control), 5, 7.5, and 10 ton/ha, respectively. Amount of rainfall, runoff, and soil loss were measured 7 times during the study. In the beginning, the amounts of runoff and soil loss from the PG treated plots were not different from those from the control plot due to steepness of the plots. However, the difference between the amount of runoff and soil loss from the PG treated plots and those from the control became apparent over time. The effect of PG treatment lasted until at least 870 mm of rainfall. Compared to the cumulative runoff from the control plot, the cumulative runoff from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 7%, 31 %, and 35%, respectively. The cumulative soil loss from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 44%, 53%, and 77% compared to that from the control plot. Strong acidity of PG (pH 2.0~2.5) did not affect the acidity of the soil and runoff.

  • PDF

Evaluation of Seawater Resistance of a Non-Sintering Inorganic Binder Using Phosphogypsum and Waste Lime as Activators

  • Kim, Ji-Hoon;Mun, Kyung-Ju;Hyung, Won-Gil
    • 한국건축시공학회지
    • /
    • 제18권2호
    • /
    • pp.185-193
    • /
    • 2018
  • In this study, using Granulated Blast Furnace Slag (GBFS), an industrial byproduct, and Phosphogypsum (PG), and Waste Lime (WL) as activator, non-sintering binder (NSB) which does not require a sintering process was produced, and the chemical penetration resistance was evaluated through a seawater resistance experiment. The result of the experiment showed that the inside of NSB mortar saw almost no influence from the ions in seawater due to its dense structure. Also, as it appears that only the surface reacts with ions in seawater while spreading inward is suppressed, the high seawater resistance of NSB could be confirmed.

양생조건 변화에 따른 비소성 시멘트 콘크리트의 건조수축 (Drying shrinkage of Non-Sintered Cement Concrete with various curing condition)

  • 문경주;박원춘;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.357-360
    • /
    • 2005
  • This research investigates the drying shrinkage of non-sintering cement(NSC) matrix added phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators with various curing condition. The experimental results are follow: When the moisture is fully supplied at the early curing age, there is effect which carries out abundant generation of the ettringite which is an expansion nature mineral, and compensates for contraction with a chemical prestress concept.

  • PDF