DOI QR코드

DOI QR Code

Phosphogypsum purification for plaster production: A process optimization using full factorial design

  • Moalla, Raida (Laboratory 3E, Sfax National School of Engineers, University of Sfax) ;
  • Gargouri, Manel (National Agency for Promotion of Scientific Research) ;
  • Khmiri, Foued (Tunisian Chemical Group Research Directorate) ;
  • Kamoun, Lotfi (Tunisian Chemical Group Research Directorate) ;
  • Zairi, Moncef (Laboratory 3E, Sfax National School of Engineers, University of Sfax)
  • Received : 2017.05.04
  • Accepted : 2017.07.18
  • Published : 2018.03.31

Abstract

The phosphogypsum (PG) is a byproduct of the phosphate fertilizers manufacture. The world production estimated to 200 million tons per year induces environmental threats and storage problems, which requires strict policies to limit pollution and encourage its valorization. This paper presents a purification process of the crude PG including treatment with a diluted sulfuric acid, floatation, filtration and washing. The purified PG is used to produce plaster. The process optimization was conducted using a full factorial design. The significant factors considered in the experimental study are temperature ($X_1$), volume of sulfuric acid solution ($X_2$) and PG quantity ($X_3$). The main effects and interaction effects of these factors on the responses of the % $P_2O_5$, % F, Total Organic Carbon (TOC) ($mg{\cdot}kg^{-1}$) and pH were analyzed. The optimum conditions for $X_1$, $X_2$ and $X_3$ were found to be $60^{\circ}C$, 3 L and 1 kg, respectively and the optimized pH values was found to be 6.2. Under these conditions, 60% of $P_2O_5$, 95% of Fluorine and 98% of TOC were removed from PG. The predicted values were found approximately the same as the experimental ones. The plaster produced with purified PG was found to have similar properties to that produced from natural gypsum.

Keywords

References

  1. Reijnders L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review. Build. Environ. 2007;42:1036-1042. https://doi.org/10.1016/j.buildenv.2005.09.016
  2. El Afifi EM, Hilal MA, Attallah MF, EL-Reefy SA. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J. Environ. Radioact. 2009;100:407-412.
  3. Kuryatnyk T, Angulski da Luz C, Ambroise J, Pera J. Valorization of phosphogypsum as hydraulic binder. J. Hazard. Mater. 2008;160:681-687. https://doi.org/10.1016/j.jhazmat.2008.03.014
  4. Hassen S, Anna Z, Elaloui EE, Belgacem MN, Mauret E. Study of the valorization of phosphogypsum in the region of Gafsa as filler in paper. IOP Conf. Ser.: Mater. Sci. Eng. 2012;28: 012018. https://doi.org/10.1088/1757-899X/28/1/012018
  5. Hammas I, Horchani-Naifer K, Ferid M. Characterization and optical study of phosphogypsum industrial waste. Stud. Chem. Process Technol. (SCPT) 2013;1:30-36.
  6. Yang J, Liu W, Zhang L, Xiao B. Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr. Build. Mater. 2009;23:687-693.
  7. Ajam L, Ouezdou MB, Felfoul HS, El Mensi R. Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Constr. Build. Mater. 2009;23:3240-3247. https://doi.org/10.1016/j.conbuildmat.2009.05.009
  8. Rutherford PM, Dudas MJ, Samek RA. Environmental impacts of phosphogypsum: A review. Sci. Total Environ. 1994;149:1-38. https://doi.org/10.1016/0048-9697(94)90002-7
  9. Zairi M, Rouis MJ. Impacts environnementaux du stockage du phosphogypse a Sfax (Tunisie). BLPC. 1999;219:29-40.
  10. Tayibi H, Choura M, Lopez FA, Alguacil, FJ, Lopez-Delgado A. Environmental impact and management of phosphogypsum. J. Environ. Manage. 2009;90:2377-2386. https://doi.org/10.1016/j.jenvman.2009.03.007
  11. Taher MA. Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resour. Conserv. Recy. 2007;52:28-38. https://doi.org/10.1016/j.resconrec.2007.01.008
  12. Parreira, AB, Kobayashi ARK, Silvestre Jr OB. Influence of Portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum. J. Environ. Eng. 2003;129:956-960. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(956)
  13. Zhoua J, Gaob H, Shub Z, Wangb Y, Yan C. Utilization of waste phosphogypsum to prepare non-fired bricks by a novel Hydration-Recrystallization process. Constr. Build. Mater. 2012;34:114-119.
  14. Potgieter JH, Potgieter SS, McCrindle RI, Strydom CA. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement. Cement Concrete Res. 2003;33:1223-1227. https://doi.org/10.1016/S0008-8846(03)00036-X
  15. Smadi MM, Haddad RH, Akour AM. Potential use of phosphogypsum in concrete. Cement Concrete Res. 1999;29:1419-1425.
  16. Manjit S, Garg M. Making of anhydrite cement from waste gypsum. Cement Concrete Res. 2000;4:571-577.
  17. Manjit S, Garg M. Production of beneficiated phosphogypsum for cement manufacture. J. Sci. Ind. Res. 2002;61:533-537.
  18. Altun IA, Sert Y. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cement Concrete Res. 2004;34:677-680. https://doi.org/10.1016/j.cemconres.2003.10.017
  19. Sfar Felfoul H. Etude du phosphogypse de Sfax (Tunisie) en vue d'une valorisation en technique routiere [dissertation]. Department of Civil Engineering. National Engineering School of Tunis/INSA Toulouse; 2004.
  20. Degirmenci N, Okucu A, Turabi A. Application of phosphogypsum in soil stabilization. Build. Environ. 2007;42:3393-3398. https://doi.org/10.1016/j.buildenv.2006.08.010
  21. Ahmadi BH. Use of high strength by product gypsum bricks in masonry construction. [dissertation]. Florida, USA: Univ. of Miami, Coral Gables; 1989.
  22. Kumar SA. Perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Constr. Build. Mater. 2002;16:519-525.
  23. Manjit S. Treating waste phosphogypsum for cement and plaster manufacture. Cement Concrete Res. 2002;32:1033-1038. https://doi.org/10.1016/S0008-8846(02)00723-8
  24. Hammas-Nasri I, Horchani-Naifer K, Ferid M. Rare earths concentration from phosphogypsum waste by two-step leaching method. Int. J. Miner. Process. 2016;149:78-83. https://doi.org/10.1016/j.minpro.2016.02.011
  25. Jarosinski A, Kowalczyk J, Mazanek C. Development of the Polish wasteless technology of apatite phosphogypsum utilization with recovery of rare-earths. J. Alloy. Compd. 1993;200:147-150. https://doi.org/10.1016/0925-8388(93)90485-6
  26. Van der Merwe EM, Strydom CA. Purification of South African PG for use as Portland cement retarder by a combined thermal and sulphuric acid treatment method. S. Afr. J. Sci. 2004;100:411-414.
  27. Lokshin EP, Tareeva OA, Elizarova IR. On integrated processing of phosphogypsum. Russ. J. Appl. Chem. 2013;86:463-468.
  28. Lokshin EP, Tareeva OA. Production of high-quality gypsum raw materials from phosphogypsum. Russ. J. Appl. Chem. 2015;88:567-573. https://doi.org/10.1134/S1070427215040023
  29. Aliedeh MA, Jarrah NA. Application of full factorial design to optimize phosphogypsum beneficiation process ($P_2O_5$ Reduction) by using sulfuric and nitric acid solutions. Sixth Jordanian International Chemical Engineering Conference, Amman, Jordan. March 2012.
  30. Kandil AHT, Cheira MF, Gado HS, Soliman MH, Akl HM. Ammonium Sulfate preparation from phosphogypsum waste. J. Radiat. Res. Appl. Sci. 2017;10:24-33. https://doi.org/10.1016/j.jrras.2016.11.001
  31. Velickovic AV, Stamenkovic OS, Todorovic ZB, Veljkovic VB. Application of the full factorial design to optimization of base-catalyzed sunflower oil ethanolysis. Fuel 2013;104: 433-442. https://doi.org/10.1016/j.fuel.2012.08.015
  32. Yi XS, Shi WX, Yu SL, Li XH, Sun N, He C. Factorial design applied to flux decline of anionic polyacrylamide removal from water by modified polyvinylidene fluoride ultrafiltration membranes. Desalination 2011;274:7-12. https://doi.org/10.1016/j.desal.2010.10.019
  33. Sadhukhan S, Sarkar U. Production of biodiesel from Crotalaria juncea (Sunn-Hemp) oil using catalytic trans-esterification: Process optimisation using a factorial and Box- Behnken design. Waste Biomass Valori. 2016;7:343-355. https://doi.org/10.1007/s12649-015-9454-4
  34. Bingol D, Tekin N, Alkan M. Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Appl. Clay Sci. 2010;50:315-321. https://doi.org/10.1016/j.clay.2010.08.015
  35. Valipour M, Banihabib ME, Behbahani SMR. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013;476:433-441. https://doi.org/10.1016/j.jhydrol.2012.11.017
  36. Valipour M. Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations. Arch. Agron. Soil Sci. 2015;61:679-694. https://doi.org/10.1080/03650340.2014.941823
  37. Valipour M. How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations. Agriculture 2016;6:53. https://doi.org/10.3390/agriculture6040053
  38. Valipour M. Global experience on irrigation management under different scenarios. J. Water Land Dev. 2017;32:95-102.
  39. Valipour M. Variations of land use and irrigation for next decades under different scenarios. Irriga: Braz. J. Irrig. Drain. 2016;1:262-288.
  40. Valipour M, Sefidkouhi MAG, Sarjaz MR. Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agr. Water Manage. 2017;180:50-60. https://doi.org/10.1016/j.agwat.2016.08.025
  41. Nejad SJ, Abolghasemia H, Moosaviana MA, Maraghehb MG. Fractional factorial design for the optimization of supercritical carbon dioxide extraction of $La^{3+}$, $Ce^{3+}$ and $Sm^{3+}$ ions from a solid matrix using bis (2,4,4-trimethylpentyl) dithiophosphinic acid + tributylphosphate. Chem. Eng. Res. Des. 2011; 8:827-835.
  42. StatPoint Inc. Statgraphics Centurion XVI user manual. United States of America 2005.
  43. Heiderscheidt E, Leiviska T, Klove B. Chemical treatment response to variations in non-point pollution water quality: Results of a factorial design experiment. J. Environ. Manage. 2015;150:164-172. https://doi.org/10.1016/j.jenvman.2014.10.021
  44. Shahabadi MSS, Reyhani A. Optimization of operating conditions in ultrafiltration process for produced water treatment via the full factorial design methodology. Sep. Purif. Technol. 2014;132:50-61. https://doi.org/10.1016/j.seppur.2014.04.051
  45. Pey CM, Maestro A, Sole I, Gonzalez C, Solans C, Gutierrez JM. Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloid. Surface. A. 2006;288:144-150. https://doi.org/10.1016/j.colsurfa.2006.02.026
  46. Zhou G, Fu L, Li X. Optimisation of ultrasound-assisted extraction conditions for maximal recovery of active monacolins and removal of toxic citrinin from red yeast rice by a full factorial design coupled with response surface methodology. Food Chem. 2015;170:186-192. https://doi.org/10.1016/j.foodchem.2014.08.080
  47. Onsekizoglua P, Bahcecib KS, Acara J. The use of factorial design for modeling membrane distillation. J. Membrane Sci. 2010;349:225-230. https://doi.org/10.1016/j.memsci.2009.11.049
  48. Shah M, Pathak K. Development and statistical optimization of solid lipid nanoparticles of simvastatin by using $2^3$ full-factorial design. AAPS PharmSciTech 2009;11:489-496.
  49. Figueroa RAR, Cassano A, Drioli E. Ultrafiltration of orange press liquor: optimization for permeate flux and fouling index by response surface methodology. Sep. Sci. Technol. 2011;80: 1-10.
  50. IS. 12679-1989. Specification for by-product gypsum for use in plaster, blocks and boards. Bureau of Indian Standards, New Delhi; 1989.
  51. Ajam L. Valorisation du phosphogypse dans la brique cuite Cas des terrils de Sfax (Tunisie) [Doctorate Thesis]. Tunisia : Univ. of Tunis El Manar; 2010.
  52. El-Didamony H, Ali MM, Awwad NS, Fawzy MM, Attallah MF. Treatment of phosphogypsum waste using suitable organic extractants. J. Radioanal. Nucl. Chem. 2012;291:907-914. https://doi.org/10.1007/s10967-011-1547-3
  53. EURATOM. Council Directive 96/26 EC. European Atomic Commission; 1996.
  54. NF EN 13279-2. Liants-platres et enduits a base de platre pour le batiment - Partie 2 : methodes d'essai 2004 [in French].
  55. NF EN 13279-1. Liants-platres et enduits a base de platre pour le batiment - Partie 1 : definitions et exigences 2008 [in French].

Cited by

  1. Procedure to convert phosphogypsum waste into valuable products pp.1532-2475, 2018, https://doi.org/10.1080/10426914.2018.1476763
  2. Multi-objective optimization of a new special-shaped tube for heating deicing fluid vol.138, pp.2, 2018, https://doi.org/10.1007/s10973-019-08302-9
  3. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry vol.207, pp.3, 2020, https://doi.org/10.1080/00986445.2019.1599865
  4. Distribution of uranium and thorium chains radionuclides in different fractions of phosphogypsum grains vol.27, pp.13, 2020, https://doi.org/10.1007/s11356-020-08090-y
  5. Tunisian phosphogypsum tailings: Assessment of leaching behavior for an integrated management approach vol.25, pp.3, 2018, https://doi.org/10.4491/eer.2019.046
  6. A zero-emission method for recycling phosphogypsum using Na2SO4 electrolysis: Preliminary study vol.259, pp.None, 2018, https://doi.org/10.1016/j.seppur.2020.118168
  7. Low-Carbon Sustainable Composites from Waste Phosphogypsum and Their Environmental Impacts vol.11, pp.7, 2021, https://doi.org/10.3390/cryst11070719
  8. Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag vol.241, pp.None, 2022, https://doi.org/10.1016/j.energy.2021.122927