• Title/Summary/Keyword: Phosphodiesterase 5 inhibitor

Search Result 62, Processing Time 0.056 seconds

Evaluation for the Effects of Intrathecal Sildenafil on the Formalin- and Thermal-induced Nocieption of Rats (쥐를 이용한 포르말린 및 열 유발 통증에서 척수강 Sildenafil의 효과에 관한 연구)

  • Yoon, Myung Ha;Bae, Hong Buem;Shin, Dong Jin;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2006
  • Background: Cyclic guanosine monophosphate (cGMP) plays an important role in the modulation of nociception. Although local sildenafil produces antinociception, by increasing cGMP through the inhibition of phosphodiesterase 5, the effect of spinal sildenafil has not been determined. The authors evaluated the effects of intrathecal sildenafil on the nociceptive behavior evoked by formalin injection and thermal stimulation. Methods: Lumbar intrathecal catheters were implanted into rats, with formalin and Hot-Box tests used as nociceptive models. The formalin-induced nociceptive behavior (flinching response) and withdrawal latency to radiant heat were measured, and the general behaviors also observed. Results: The intrathecal administration of sildenafil produced dose-dependent suppression of the flinches in both phases in the formalin test, and increased the withdrawal latency in the Hot-Box test. No abnormal behaviors were noted. Conclusions: Sildenafil, an inhibitor of phosphodiesterase 5, is active against the nociceptive state evoked in the spinal cord by formalin and thermal stimulations. Accordingly, spinal sildenafil may be useful in the management of pain.

Effect of Amrinone, a Selective Inhibitor of Phosphodiesterase III, on PMNs-induced Cardiac Dysfunction in Ischemia/reperfusion

  • Oh, Byung-Kwon;Kim, Hyoung-Ki;Choi, Soo-Ran;Song, Jin-Ho;Park, Eon-Sub;Choi, Byung-Sun;Park, Jung-Duck;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2004
  • Ischemia followed by reperfusion in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. Amrinone, a specific inhibitor of phosphodiesterase 3, has an antioxidant activity against PMNs. Therefore, we hypothesized that amrinone could attenuate PMNs-Induced cardiac dysfunction by suppression of reactive oxygen species (ROS) produced fby PMNs. In the present study, we examined the effects of amrinone on isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs. Amrinone at $25\;{\mu}M$, given to hearts during the first 5 min of reperfusion, significantly improved coronary flow, left ventricular developed pressure (P<0.001), and the maximal rate of development of left ventricular developed pressure (P<0.001), compared with ischemic/reperfused hearts perfused with PMNs in the absence of amrinone. In addition, amrinone significantly reduced myeloperoxidase activity by 50.8%, indicating decreased PMNs infiltration (p< 0.001). Superoxide radical and hydrogen peroxide production were also significantly reduced in fMLP- and PMA-stimulated PMNs pretreated with amrinone. Hydroxyl radical was scavenged by amrinone. fMLP-induced elevation of $[Ca^{2+}]_i$ was also inhibited by amrinone. These results provide evidence that amrinone can significantly attenuate PMN-induced cardiac contractile dysfunction in the ischemic/reperfused rat heart via attenuation of PMNs infiltration into the myocardium and suppression of ROS release by PMNs.

Pharmacokinetics of KR-30075, A Potent Phosphodiesterase III Inhibitor in Rats (포스포디에스테라제 III의 저해물인 KR-30075의 흰쥐에서의 약물속도론)

  • Lee, Kwang-Pyo;Kim, Hyo-Jin;Kwon, Kwang-Il;Cho, Song-Ja
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.259-268
    • /
    • 1992
  • A procedure for the determination of KR-30075 and its metabolites in plasma and urine by high performance liquid chromatography is described. For the study of pharmacokinetic properties of KR-30075, a new PDE III inhibitor, the plasma concentration and urinary excretion after an oral administration of KR-30075 (4 mg/kg) in the male rat (Sprague Dawley) were determined by high performance liquid chromatography. The best extraction efficiency of KR-30075 and KR-30072 is obtained with ethyl ether adjusted to pH 4.0. Retention times of both KR-30072 and KR-30075 were within 5 min and resolution was complete at the flow rate of 1.0 ml/min. The sensitivity and specificity of this HPLC assay appears to be satisfactory for the pharmacokinetic study of KR-30075 and its metabolites. One-compartment open model with first-order absorption was applied to evaluate the pharmacokinetic parameters of KR-30075 according to Minimum AIC Estimation. $T_{max}$ was 1 hr, $C_{max}$ was $0.789{\pm}0.31\;{\mu}g/ml$ and elimination half $T_{1/2}$ was 6.31 min after oral administration of 4 mg/kg KR-30075 to male rats.

  • PDF

A Case of Acute Pulmonary Thromboembolism after Taking Tadalafil

  • Lee, Jinwoo;Kwon, Ji Hyun;Lee, Chang-Hoon;Lee, Sang-Min;Yim, Jae-Joon;Yoo, Chuy-Gyu;Kim, Young Whan;Han, Sung Koo;Park, Young Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.4
    • /
    • pp.231-233
    • /
    • 2012
  • Tadalafil is a phosphodiesterase-5 inhibitor (PDE5I), which is widely used to treat erectile dysfunction. Although PDE5Is have excellent safety profiles, and most of the side effects are mild, rare serious adverse events have been reported in association with PDE5Is. Thrombosis is one of those events, and a few previous reports have suggested the association of PDE5Is with thrombosis. We report the case of a 61-year-old male who developed pulmonary embolism combined with pulmonary infarction directly after taking tadalafil. Both the patient and the physician suspected tadalafil as the culprit drug, as the patient was in an otherwise healthy condition. However, after extensive evaluation, we noticed that factor VIII levels were elevated. Prior reports suggesting the association between thrombosis and PDEIs either lack complete information on coagulation factors, or show inconsistencies in their results. Physicians should operate caution prior to accepting the diagnosis of adverse drug reaction.

Effects of Phosphodiesterase 5 Inhibition with Sildenafil on Atrial Contractile and Secretory Function

  • Quan, He Xiu;Kim, Sun-Young;Jin, Xuan-Shun;Park, Jong-Kwan;Kim, Sung-Zoo;Cho, Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.149-154
    • /
    • 2006
  • Selective inhibition of phosphodiesterase (PDE) 5 opened a new therapeutic approach for cardiovascular disorders. Therefore, the effect of PDE5 inhibition on the cardiac function should thoroughly be defined. The purpose of the present study was to define the effects of sildenafil, a selective inhibitor of PDE5, on the atrial cGMP efflux, atrial dynamics, and the release of atrial natriuretic peptide (ANP). By perfusing rabbit left atria to allow atrial pacing, changes in atrial stroke volume and pulse pressure, transmural extracellular fluid translocation, cGMP efflux, and ANP secretion were measured. SIN-I, an NO donor and soluble (s) guanylyl cyclase (GC) activator, and C-type natriuretic peptide (CNP), an activator of particulate (p) GC activator, were used. Sildenafil increased basal levels of cGMP efflux slightly but not significantly. Sildenafil in a therapeutic dose increased atrial dynamics (for atrial stroke volume, $2.84{\pm}1.71%$, n=12, vs $-0.71{\pm}0.86%$, n=21; p<0.05) and decreased ANP release ($-9.02{\pm}3.36%$, n=14, vs $1.35{\pm}3.25%$, n=23; p < 0.05), however, it had no effect on the SIN-1- or CNP-induced increase of cGMP levels. Furthermore, sildenafil in a therapeutic dose accentuated SIN-1-induced, but not CNP-induced, decrease of atrial pulse pressure and ANP release. These data indicate that PDE5 inhibition with sildenafil has a minor effect on cGMP levels, but has a distinct effect on pGC-cGMP- and sGC-cGMP-induced contractile and secretory function.

Antinociceptive Effect of the Intrathecal Phosphodiesterase Inhibitor, Zaprinast, in a Rat Formalin Test

  • Heo, Burn Young;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong II;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • Background: Cyclic guanosine monophosphate (cGMP) and opioid receptors are involved in the modulation of nociception. Although the opioid receptors agonists are active in pain, the effect of an phospodiesterase inhibitor (zaprinast) for increasing the level of cGMP has not been thoroughly investigated at the spinal level. This study examined the effects of intrathecal zaprinast and morphine in a nociceptive test and we also examined the nature of the pharmacological interaction after the coadministration of zaprinast with morphine. The role of the nitric oxide (NO)-cGMP-potassium channel pathway on the effect of zaprinast was further clarified. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution was applied to the hindpaw. Isobolographic analysis was used for the evaluation of the drug interaction between zaprinast and morphine. Furthermore, NO synthase inhibitor ($_L-NMMA$), guanylyl cyclase inhibitor (ODQ) or a potassium channel blocker (glibenclamide) were intrathecally administered to verify the involvement of the NO-cGMP- potassium channel pathway on the antinociception effect of zaprinast. Results: Both zaprinast and morphine produced an antinociceptive effect during phase 1 and phase 2 in the formalin test. Isobolographic analysis revealed a synergistic interaction after the intrathecal administration of the zaprinast-morphine mixture in both phases. Intrathecal $_L-NMMA$, ODQ and glibenclamide did not reverse the antinociception of zaprinast in either phase. Conclusions: These results suggest that zaprinast, morphine and the mixture of the two drugs are effective against acute pain and they facilitated pain state at the spinal level. Thus, the spinal combination of zaprinast with morphine may be useful for the management of pain. However, the NO-sensitive cGMP-potassium channel pathway did not contribute to the antinocieptive mechanism of zaprinast in the spinal cord.

Modulation of L-type $Ca^{2+}$ Channel Currents by Various Protein Kinase Activators and Inhibitors in Rat Clonal Pituitary $GH_3$ Cell Line

  • Bae, Young-Min;Baek, Hye-Jung;Cho, Ha-Na;Earm, Yung-E;Ho, Won-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.139-146
    • /
    • 2001
  • L-type $Ca^{2+}$ channels play an important role in regulating cytosolic $Ca^{2+}$ and thereby regulating hormone secretions in neuroendocrine cells. Since hormone secretions are also regulated by various kinds of protein kinases, we investigated the role of some kinase activators and inhibitors in the regulation of the L-type $Ca^{2+}$ channel currents in rat pituitary $GH_3$ cells using the patch-clamp technique. Phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator, and vanadate, a protein tyrosine phosphatase (PTP) inhibitor, increased the $Ba^{2+}$ current through the L-type $Ca^{2+}$ channels. In contrast, bisindolylmaleimide I (BIM I), a PKC inhibitor, and genistein, a protein tyrosine kinase (PTK) inhibitor, suppressed the $Ba^{2+}$ currents. Forskolin, an adenylate cyclase activator, and isobutyl methylxanthine (IBMX), a non-specific phosphodiesterase inhibitor, reduced $Ba^{2+}$ currents. The above results show that the L-type $Ca^{2+}$ channels are activated by PKC and PTK, and inhibited by elevation of cyclic nucleotides such as cAMP. From these results, it is suggested that the regulation of hormone secretion by various kinase activity in $GH_3$ cells may be attributable, at least in part, to their effect on L-type $Ca^{2+}$ channels.

  • PDF

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells (Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구)

  • Lee, Sae-Won;Park, Jung Hwa;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1367-1375
    • /
    • 2016
  • Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.

The Antiallodynic Effects of Intrathecal Zaprinast in Rats with Chronic Constriction Injury of the Sciatic Nerve (좌골신경 만성협착손상 흰쥐에서 척수강 내로 투여된 Zaprinast의 항이질통 효과)

  • Lee, Jae Do;Jun, In Gu;Choi, Yun Sik;Im, So Hyun;Park, Jong Yeon
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 2009
  • Background: Zaprinast is an inhibitor of phosphodiesterase 5, 6 and 9. Phosphodiesterase inhibitors could produce anti-nociceptive effects by promoting the accumulation of cGMP. We hypothesized that intrathecal zaprinast could attenuate the allodynia induced by chronic constriction injury of the sciatic nerve in rat. Methods: Sprague-Dawley rats were prepared with four loose ligations of the left sciatic nerve just proximal to the trifurcation into the sural, peroneal and tibial nerve branches. Tactile allodynia was measured by applying von Frey filaments to the lesioned hindpaw. The thresholds for the withdrawal responses were assessed. Zaprinast ($3-100{\mu}g$) was administered intrathecally by the direct lumbar puncture method to obtain the dose-response curve and the 50% effective dose ($ED_{50}$). Measurements were taken before and 15, 30, 45, 60, 90, 120, and 180 min after the intrathecal doses of zaprinast. The side effects were also observed. Results: Intrathecal zaprinast resulted in a dose-dependent antiallodynic effect. The maximal effects occurred within 15-30 min and then they gradually decreased down to the baseline level over time in all the groups. There was a dose dependent increase in the magnitude and duration of the effect. The $ED_{50}$ value was $17.4{\mu}g$ (95% confidence intervals; $14.7-20.5{\mu}g$). No severe motor weakness or sedation was observed in any of the rats. Conclusions: Intrathecally administered zaprinast produced a dose-dependent antiallodynic effect in the chronic constriction injury neuropathic pain model. These findings suggest that spinal phosphodiesterase 5, 6 and 9 may play an important role in the modulation of neuropathic pain.

Inhibitory Effects of Furoquinoline Alkaloids from Melicope confusa and Dictamnus albus against Human Phosphodiesterase 5 (hPDE5A) In Vitro

  • Nam Kung-woo;Je Kang-Hoon;Shin Young-Jun;Kang Sam Sik;Mar Woongchon
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.675-679
    • /
    • 2005
  • Eight furoquinoline alkaloids were purified from two plants belonging to the Rutaceae family. Kokusaginine. skimmianine, evolitrine, and confusameline were purified from Melicope confusa, and haplopine, robustine, dictamine, and $\gamma$-fagarine from Dictamnus albus. In this study, the eight furoquinoline alkaloids were examined for inhibitory potency against human phos-phodiesterase 5 (hPDE5A) in vitro. DNA encoding the catalytic domain of human PDE5A was amplified from the mRNA of T24 cells by RT-PCR and was fused to GST in an expression vector. GST-tagged PDE5A was then purified by glutathione affinity chromatography and used in inhibition assays. Of the eight alkaloids, $\gamma$-fagarine was the most potent inhibitor of PDE5A, and its single methoxy group at the C-8 position was shown to be critical for inhibitory activity. These results clearly illustrate the relationship between PDE5A inhibition and the methoxy group position in furoquinoline alkaloids.