• Title/Summary/Keyword: Phosphatidylinositol 3-Kinase

Search Result 193, Processing Time 0.026 seconds

Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms

  • Chung, Woo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.171-180
    • /
    • 2021
  • Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.

Ghrelin Protects Spinal Cord Motoneurons Against Chronic Glutamate Excitotoxicity by Inhibiting Microglial Activation

  • Lee, Sung-Youb;Kim, Yu-Mi;Li, Endan;Park, Seung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • Glutamate excitotoxicity is emerging as a contributor to degeneration of spinal cord motoneurons in amyotrophic lateral sclerosis (ALS). Recently, we have reported that ghrelin protects motoneurons against chronic glutamate excitotoxicity through the activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-$3{\beta}$ pathways. Previous studies suggest that activated microglia actively participate in the pathogenesis of ALS motoneuron degeneration. However, it is still unknown whether ghrelin exerts its protective effect on motoneurons via inhibition of microglial activation. In this study, we investigate organotypic spinal cord cultures (OSCCs) exposed to threohydroxyaspartate (THA), as a model of excitotoxic motoneuron degeneration, to determine if ghrelin prevents microglial activation. Exposure of OSCCs to THA for 3 weeks produced typical motoneuron death, and treatment of ghrelin significantly attenuated THA-induced motoneuron loss, as previously reported. Ghrelin prevented THA-induced microglial activation in the spinal cord and the expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ and interleukin-$1{\beta}$. Our data indicate that ghrelin may act as a survival factor for motoneurons by functioning as a microglia-deactivating factor and suggest that ghrelin may have therapeutic potential for the treatment of ALS and other neurodegenerative disorders where inflammatory responses play a critical role.

Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells

  • Lee, Jae-Hwan;Yoo, Yeong-Min;Lee, Bonn;Jeong, SunHwa;Tran, Dinh Nam;Jeung, Eui-Bae
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.54.1-54.13
    • /
    • 2021
  • Background: Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives: This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods: Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results: Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions: This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer

  • Rho, Seung Bae;Lee, Keun Woo;Lee, Seung-Hoon;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.506-518
    • /
    • 2021
  • The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

c-Jun N-terminal Kinase Contributes to Norepinephrine-Induced Contraction Through Phosphorylation of Caldesmon in Rat Aortic Smooth Muscle

  • Lee, Youn-Ri;Lee, Chang-Kwon;Park, Hyo-Jun;Kim, Hyo-Jin;Kim, Jung-Hwan;Kim, Jae-Heung;Lee, Keun-Sang;Lee, Yun-Lyul;Min, Kyung-Ok;Kim, Bo-Kyung
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • Vascular smooth muscle contraction is mediated by activation of extracellular signal-regulated kinase (ERK) 1/2, an isoform of mitogen-activated protein kinase (MAPK). However, the role of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) in vascular smooth muscle contraction has not been defined. We investigated the role of JNK in the contractile response to norepinephrine (NE) in rat aortic smooth muscle. NE evoked contraction in a dose-dependent manner, and this effect was inhibited by the JNK inhibitor SP600125. NE increased the phosphorylation of JNK, which was greater in aortic smooth muscle from hypertensive rats than from normotensive rats. NE-induced JNK phosphorylation was significantly inhibited by SP600125 and the conventional-type PKC (cPKC) inhibitor Go6976, but not by the Rho kinase inhibitor Y27632 or the phosphatidylinositol 3-kinase inhibitor LY294002. Thymeleatoxin, a selective activator of cPKC, increased JNK phosphorylation, which was inhibited by $G{\ddot{o}}6976$. SP600125 attenuated the phosphorylation of caldesmon, an actin-binding protein whose phosphorylation is increased by NE. These results show that JNK contributes to NE-mediated contraction through phosphorylation of caldesmon in rat aortic smooth muscle, and that this effect is regulated by the PKC pathway, especially cPKC.

  • PDF

Effects of Acanthopanax senticosus Water Extract on Glucose-Regulating Mechanisms in HepG2 Cells (가시오갈피 물 추출물이 간세포에서 포도당 이용 대사에 미치는 영향)

  • Kim, Dae-Jung;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Park, Jae Bong;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.552-561
    • /
    • 2017
  • This study aimed to investigate glucose uptake mechanisms and metabolic mechanisms for absorbed glucose in HepG2 cells treated with Acanthopanax senticosus water extract (ASW). A colorimetric assay kit was used to measure polyphenol content, glucokinase (GK) activity, glucose uptake, glucose consumption in cell culture medium, and glycogen content. RT-PCR and western blotting were performed to examine changes in the expression levels of glucose transporter 2 (GLUT2), hepatocyte nuclear factor $1{\alpha}$ ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phospho-AMP-activated protein kinase (AMPK), phosphoenolpyruvate carboxykinase, GK, and glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$). Increased glucose uptake upon ASW treatment was confirmed to result from increased expression of $HNF-1{\alpha}$, which is one of the transcription factors acting on the GLUT2 promoter. From the measurements of GK activity, we observed that ASW had an effect on glucose phosphorylation, and we also confirmed that increased AMPK phosphorylation promoted glycolysis and suppressed gluconeogenesis. We confirmed that the increase in glycogen upon ASW treatment was induced by activation of Akt by PI3k, followed by phosphorylation of $GSK3{\beta}$. This study demonstrates that ASW activates glucose metabolic mechanisms in liver cells and is therefore a potential candidate to alleviate diabetes.

Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects

  • Wan, Yan;Wang, Jing;Xu, Jin-feng;Tang, Fei;Chen, Lu;Tan, Yu-zhu;Rao, Chao-long;Ao, Hui;Peng, Cheng
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.617-630
    • /
    • 2021
  • Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural nontoxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun Nterminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.

Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells

  • Lee, Yoon-Jin;Bae, Jin-Ho;Kim, Soo-A;Kim, Sung-Ho;Woo, Kee-Min;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.567-576
    • /
    • 2017
  • The $Na^+/H^+$ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular $Na^+$ and the extrusion of intracellular $H^+$. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent $Na^+/H^+-exchange$ inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a $sub-G_0/G_1$ peak, and a $G_2/M$ phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, $p-ATM^{Ser1981}$, $p-ATR^{Ser428}$, $p-CHK1^{Ser345}$, and $p-CHK2^{Thr68}$, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acidtolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.

Changes in expression of insulin signaling pathway genes by dietary fat source in growing-finishing pigs

  • Kim, Seung-Chang;Jang, Hong-Chul;Lee, Sung-Dae;Jung, Hyun-Jung;Park, Jun-Cheol;Lee, Seung-Hwan;Kim, Tae-Hun;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.56 no.4
    • /
    • pp.12.1-12.7
    • /
    • 2014
  • This study investigated changes in gene expression by dietary fat source, i.e., beef tallow, soybean oil, olive oil, and coconut oil (each 3% in feed), in both male and female growing-finishing pigs. Real-time PCR was conducted on seven genes (insulin receptor; INSR, insulin receptor substrate; IRS, phosphatidylinositol (3,4,5)-triphosphate; PIP3, 3-phosphoinositide-dependent protein kinase-1; PDK1, protein kinase B; Akt, forkhead box protein O1; FOXO1 and cGMP-inhibited 3', 5'-cyclic phosphodiesterase; PDE3) located upstream of the insulin signaling pathway in the longissimus dorsi muscle (LM) of pigs. The INSR, IRS, PIP3, and PDE3 genes showed significantly differential expression in barrow pigs. Expression of the PIP3 and FOXO1 genes was significantly different among the four dietary groups in gilt pigs. In particular, the PIP3 gene showed the opposite expression pattern between barrow and gilt pigs. These results show that dietary fat source affected patterns of gene expression according to animal gender. Further, the results indicate that the type of dietary fat affects insulin signaling-related gene expression in the LM of pigs. These results can be applied to livestock production by promoting the use of discriminatory feed supplies.

Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

  • Kim, Jeung-Il;Kim, Hye-Young;Kim, Sun-Mi;Lee, Sae-A;Son, Yong-Hae;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express $PSY_1$, $PSY_6$, and $PSY_{11}$ receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to $NAD^+$, an agonist of the human $PSY_{11}$ receptor, and $NADP^+$ as well as ATP, an agonist for $PSY_1$ and $PSY_{11}$ receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by $NAD^+$ and $NADP^+$ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. $NAD^+$ and $NADP^+$ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. $NAD^+$- and $NADP^+$-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process.