Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.121

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer  

Rho, Seung Bae (Division of Translational Science, Research Institute, National Cancer Center)
Lee, Keun Woo (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Lee, Seung-Hoon (Department of Life Science, Yong In University)
Byun, Hyun Jung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
Kim, Boh-Ram (Division of Translational Science, Research Institute, National Cancer Center)
Lee, Chang Hoon (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
Publication Information
Biomolecules & Therapeutics / v.29, no.5, 2021 , pp. 506-518 More about this Journal
Abstract
The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.
Keywords
Ovarian cancer; VEGFR-2; NOEY2 N-terminal; Antiangiogenic activity; Homology modelling; Tumour suppressor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nishimoto, A., Yu, Y., Lu, Z., Mao, X., Ren, Z., Watowich, S. S., Mills, G. B., Liao, W. S., Chen, X., Bast, R. C., Jr. and Luo, R. Z. (2005) A Ras homologue member I directly inhibits signal transducers and activators of transcription 3 translocation and activity in human breast and ovarian cancer cells. Cancer Res. 65, 6701-6710.   DOI
2 Luo, R. Z., Fang, X., Marquez, R., Liu, S. Y., Mills, G. B., Liao, W. S., Yu, Y. and Bast, R. C. (2003) ARHI is a Ras-related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers. Oncogene 22, 2897-2909.   DOI
3 Byrne, A. M., Bouchier-Hayes, D. J. and Harmey, J. H. (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9, 777-794.   DOI
4 Zhong, C., Shu, M., Ye, J., Wang, X., Chen, X., Liu, Z., Zhao, W., Zhao, B., Zheng, Z., Yin, Z., Gao, M., Zhao, H., Wang, K. and Zhao, S. (2019) Oncogenic Ras is downregulated by ARHI and induces autophagy by Ras/AKT/mTOR pathway in glioblastoma. BMC Cancer 19, 441.   DOI
5 Meadows, K. N., Bryant, P. and Pumiglia, K. (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J. Biol. Chem. 276, 49289-49298.   DOI
6 Rho, S. B., Kim, M. J., Lee, J. S., Seol, W., Motegi, H., Kim, S. and Shiba, K. (1999) Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc. Natl. Acad. Sci. U.S.A. 96, 4488-4493.   DOI
7 Spannuth, W. A., Nick, A. M., Jennings, N. B., Armaiz-Pena, G. N., Mangala, L. S., Danes, C. G., Lin, Y. G., Merritt, W. M., Thaker, P. H., Kamat, A. A., Han, L. Y., Tonra, J. R., Coleman, R. L., Ellis, L. M. and Sood, A. K. (2009) Functional significance of VEGFR-2 on ovarian cancer cells. Int. J. Cancer 124, 1045-1053.   DOI
8 Rho, S. B., Lee, S. H., Byun, H. J., Kim, B. R. and Lee, C. H. (2020) IRF-1 inhibits angiogenic activity of HPV16 E6 oncoprotein in cervical cancer. Int. J. Mol. Sci. 21, 7622.   DOI
9 Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671-674.   DOI
10 Rho, S. B., Song, Y. J., Lim, M. C., Lee, S. H., Kim, B. R. and Park, S. Y. (2012) Programmed cell death 6 (PDCD6) inhibits angiogenesis through PI3K/mTOR/p70S6K pathway by interacting of VEGFR-2. Cell. Signal. 24, 131-139.   DOI
11 Shen, W., Li, H., Liu, L. and Cheng, J. (2017) Expression levels of PTEN, HIF-1alpha, and VEGF as prognostic factors in ovarian cancer. Eur. Rev. Med. Pharmacol. Sci. 21, 2596-2603.
12 Shi, R., Liao, C. and Zhang, Q. (2021) Hypoxia-driven effects in cancer: characterization, mechanisms, and therapeutic implications. Cells 10, 678.   DOI
13 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.   DOI
14 Sutton, M. N., Lu, Z., Li, Y. C., Zhou, Y., Huang, T., Reger, A. S., Hurwitz, A. M., Palzkill, T., Logsdon, C., Liang, X., Gray, J. W., Nan, X., Hancock, J., Wahl, G. M. and Bast, R. C., Jr. (2019) DIRAS3 (ARHI) blocks RAS/MAPK signaling by binding directly to RAS and disrupting RAS clusters. Cell Rep. 29, 3448-3459.e6.   DOI
15 Tuninetti, V., Di Napoli, M., Ghisoni, E., Maggiorotto, F., Robella, M., Scotto, G., Giannone, G., Turinetto, M., Siatis, D., Ponzone, R., Vaira, M., De Simone, M., Scaffa, C., Pignata, S., Greggi, S., Di Maio, M. and Valabrega, G. (2020) cytoreductive surgery for heavily pre-treated, platinum-resistant epithelial ovarian carcinoma: a two-center retrospective experience. Cancers (Basel) 12, 2239.   DOI
16 Bamberger, E. S. and Perrett, C. W. (2002) Angiogenesis in epithelian ovarian cancer. Mol. Pathol. 55, 348-359.   DOI
17 Ferrara, N. (2002) VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795-803.   DOI
18 Bao, J. J., Le, X. F., Wang, R. Y., Yuan, J., Wang, L., Atkinson, E. N., LaPushin, R., Andreeff, M., Fang, B., Yu, Y. and Bast, R. C., Jr. (2002) Reexpression of the tumor suppressor gene ARHI induces apoptosis in ovarian and breast cancer cells through a caspaseindependent calpain-dependent pathway. Cancer Res. 62, 7264-7272.
19 Birner, P., Schindl, M., Obermair, A., Breitenecker, G. and Oberhuber, G. (2001) Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin. Cancer Res. 7, 1661-1668.
20 Conteduca, V., Kopf, B., Burgio, S. L., Bianchi, E., Amadori, D. and De Giorgi, U. (2014) The emerging role of anti-angiogenic therapy in ovarian cancer (review). Int. J. Oncol. 44, 1417-1424.   DOI
21 Gasper, R., Sot, B. and Wittinghofer, A. (2010) GTPase activity of DiRas proteins is stimulated by Rap1GAP proteins. Small GTPases 1, 133-141.   DOI
22 Guo, B. Q. and Lu, W. Q. (2018) The prognostic significance of high/positive expression of tissue VEGF in ovarian cancer. Oncotarget 9, 30552-30560.   DOI
23 Hicklin, D. J. and Ellis, L. M. (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011-1027.   DOI
24 Zagzag, D., Zhong, H., Scalzitti, J. M., Laughner, E., Simons, J. W. and Semenza, G. L. (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88, 2606-2618.   DOI
25 Horikawa, N., Abiko, K., Matsumura, N., Hamanishi, J., Baba, T., Yamaguchi, K., Yoshioka, Y., Koshiyama, M. and Konishi, I. (2017) Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin. Cancer Res. 23, 587-599.   DOI
26 Wang, X., Bove, A. M., Simone, G. and Ma, B. (2020) Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 8, 599281.   DOI
27 Wigerup, C., Pahlman, S. and Bexell, D. (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 164, 152-169.   DOI
28 Yu, L., Kim, H. J., Park, M. K., Byun, H. J., Kim, E. J., Kim, B., Nguyen, M. T., Kim, J. H., Kang, G. J., Lee, H., Kim, S. Y., Rho, S. B. and Lee, C. H. (2021) Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling. Biochem. Pharmacol. 183, 114339.   DOI
29 Yu, Y., Xu, F., Peng, H., Fang, X., Zhao, S., Li, Y., Cuevas, B., Kuo, W. L., Gray, J. W., Siciliano, M., Mills, G. B. and Bast, R. C., Jr. (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc. Natl. Acad. Sci. U.S.A. 96, 214-219.   DOI
30 Lu, Z., Luo, R. Z., Lu, Y., Zhang, X., Yu, Q., Khare, S., Kondo, S., Kondo, Y., Yu, Y., Mills, G. B., Liao, W. S. and Bast, R. C., Jr. (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Invest. 118, 3917-3929.   DOI
31 Maharjan, S., Park, B. K., Lee, S. I., Lim, Y., Lee, K., Lee, Y. and Kwon, H. J. (2019) Gomisin G suppresses the growth of colon cancer cells by attenuation of AKT phosphorylation and arrest of cell cycle progression. Biomol. Ther. (Seoul) 27, 210-215.   DOI
32 Majmundar, A. J., Wong, W. J. and Simon, M. C. (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309.   DOI
33 Mao, W., Peters, H. L., Sutton, M. N., Orozco, A. F., Pang, L., Yang, H., Lu, Z. and Bast, R. C., Jr. (2019) The role of vascular endothelial growth factor, interleukin 8, and insulinlike growth factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer xenografts. Cancer 125, 1267-1280.   DOI
34 Masoud, G. N. and Li, W. (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 5, 378-389.   DOI
35 Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M. and Hagler, A. T. (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductasetrimethoprim, a drug-receptor system. Proteins 4, 31-47.   DOI
36 Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H. and Shu, Y. (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157.   DOI
37 Kang, S., Dong, S. M., Kim, B. R., Park, M. S., Trink, B., Byun, H. J. and Rho, S. B. (2012) Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 17, 989-997.   DOI
38 Li, T., Kang, G., Wang, T. and Huang, H. (2018) Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol. Lett. 16, 687-702.
39 Kim, B. R., Seo, S. H., Park, M. S., Lee, S. H., Kwon, Y. and Rho, S. B. (2015) sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1alpha signaling pathways. Oncotarget 6, 31830-31843.   DOI
40 Lheureux, S., Braunstein, M. and Oza, A. M. (2019) Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 69, 280-304.
41 Lu, Z., Yang, H., Sutton, M. N., Yang, M., Clarke, C. H., Liao, W. S. and Bast, R. C., Jr. (2014) ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ. 21, 1275-1289.   DOI
42 Lugano, R., Ramachandran, M. and Dimberg, A. (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77, 1745-1770.   DOI
43 Plate, K. H., Breier, G., Weich, H. A. and Risau, W. (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845-848.   DOI
44 Rankin, E. B. and Giaccia, A. J. (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15, 678-685.   DOI
45 Rho, S. B., Lee, K. H., Kim, J. W., Shiba, K., Jo, Y. J. and Kim, S. (1996) Interaction between human tRNA synthetases involves repeated sequence elements. Proc. Natl. Acad. Sci. U.S.A. 93, 10128-10133.   DOI