• Title/Summary/Keyword: Phosphate-solubilizing

Search Result 105, Processing Time 0.02 seconds

Molecular Genetic Identification of Yeast Strains Isolated from Egyptian Soils for Solubilization of Inorganic Phosphates and Growth Promotion of Corn Plants

  • Hesham, Abd El-Latif;Mohamed, Hashem M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Forty yeast strains isolated from soils taken from different locations in Egypt were tested for their P-solubilizing activities on the basis of analyzing the clear zone around colonies growing on a tricalcium phosphate medium after incubation for 5 days at $25^{\circ}C$, denoted as the solubilization index (SI). Nine isolates that exhibited P-solubilization potential with an SI ranging from 1.19 to 2.76 were genetically characterized as five yeasts belonging to the genus Saccharomyces cerevisiae and four non-Saccharomyces, based on a PCR analysis of the ITS1-26S region amplied by SC1/SC2 species-specific primers. The highest P-solubilization efficiency was demonstrated by isolate PSY- 4, which was identified as Saccharomyces cerevisiae by a sequence analysis of the variable D1/D2 domain of the 26S rDNA. The effects of single and mixed inoculations with yeast PSY-4 and Bacillus polymyxa on the P-uptake and growth of corn were tested in a greenhouse experiment using different levels of a phosphorus chemical fertilizer (50, 100, and 200 kg/ha super phosphate 15.5% $P_2O_5$). The results showed that inoculating the corn with yeast PSY-4 or B. polymyxa caused significant increases in the shoot and root dry weights and P-uptake in the shoots and roots. The P-fertilization level also had a significant influence on the shoot and root dry weights and P-uptake in the shoots and roots when increasing the P-level from 50 up to 200 kg/ha. Dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 200 kg/ha gave higher values for the shoot and root dry weights and P-uptake in the shoots and roots, yet these increases were nonsignificant when compared with dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha. The best increases were obtained from dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha, which induced the following percentage increases in the shoot and root dry weights, and P-uptake in the shoots and roots; 16.22%, 46.92%, 10.09%, and 31.07%, respectively, when compared with the uninoculated control (fertilized with 100 kg/ha).

Biological Control of White Rot in Apple Using Bacillus spp. (Bacillus spp.를 이용한 사과 겹무늬썩음병의 생물학적 방제)

  • Ha-Kyoung Lee;Jong-Hwan Shin;Seong-Chan Lee;You-Kyoung Han
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.390-398
    • /
    • 2023
  • Apple white rot, caused by Botryosphaeria dothidea, is one of the important diseases in Korea. B. dothidea can cause pre- and postharvest decay on apple fruit as well as canker and dieback of apple trees. In this study, we isolated bacteria from the trunk of apple trees and tested their antagonistic activity against B. dothidea. Five bacterial isolates (23-168, 23-169, 23-170, 23-172, and 23-173) were selected that were most effective at inhibiting the mycelial growth of the pathogens. The isolate 23-172 was identified as Bacillus amyloliquefaciens and four isolates 23-168, 23-169, 23-170, and 23-173 were identified as Bacillus velezensis by RNA polymerase beta subunit (rpoB) and DNA gyraseA subunit (gyrA) gene sequencing. All isolates showed strong antagonistic activity against B. dothidiea as well as Colletotrichum fructicola and Diaporthe eres. All isolates exhibited cellulolytic, proteolytic and phosphate solubilizing activities. In particular, two isolates 23-168, 23-169 were shown to significantly reduce the size of white rot lesions in pretreated apple fruits. These results will provide the basis for the development of a fungicide alternative for the control of white rot of apple.

Dissolution and Duodenal Permeation Characteristics of Lovastatin from Bile Salt Solid Dispersions (담즙산염과의 고체분산체로부터 로바스타틴의 용출 및 십이지장 점막 투과 특성)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Although lovastatin (LS) is widely used in the treatment of hypercholesterolemia, its bioavailability is known to be around 5%. This study was aimed to increase the solubility and dissolution-permeation rates of LS using solid dispersions (SDs) with bile salts. The solubilities of LS in water, aqueous bile salt solutions and non-aqueous vehicles were determined, and effects of bile salts on the cellulose or duodenal permeation of LS from SDs were evaluated using a horizontal permeation system. SDs were prepared at various ratios of LS to carriers, such as sodium deoxycholate (SDC), sodium glycocholate (SGC) and/or 2-hydroxypropyl-$\beta$-cyclodextrin (HPCD). The addition of bile salts (25 mM) in water increased markedly the solubility of LS by the micellar solubilization. Some non-aqueous vehicles were effective in solubilizing LS. From differential scanning calorimetric studies, it was found that the crystallinity of LS in SDs disappeared, indicating a formation of amorphous state. The SDs showed markedly enhanced dissolution compared with those of their physical mixtures (PMs) and drug alone. In the dissolution-permeation studies using a cellulose membrane, the donor and receptor solutions were maintained as a sink condition using pH 7.0 phosphate buffer containing 0.05% sodium lauryl sulfate (SLS). The flux of LS alone was nearly same as that of LS-SDC-HPCD (1:3:6) PM. However, the flux of LS-SDC-HPCD (1:3:6) SD slightly increased compared with drug alone and PM, suggesting that entrapment of LS in micelles does not significantly hinder the permeation across cellulose membrane. In the dissolution-duodenal permeation studies using a LS-HPCD-SDC (1:3:6) SD, the addition of various bile salts in donor solutions (25 mM) enhanced the permeation of LS markedly, and the fluxes were found to be $0.69{\pm}0.41$, $0.87{\pm}0.51$, $0.84{\pm}0.46$, $0.47{\pm}0.17$ and $0.68{\pm}0.32{\mu}g/cm^2/hr$ for sodium cholate (SC), SDC, SGC, sodium taurodeoxycholate (STDC) and sodium taurocholate (STC), respectively. The stepwise increase of donor SGC concentration increased the flux dose-dependently. From the relationship of donor SGC concentration and flux, the concentration of SGC initiating the permeation across the duodenal mucosa was calculated to be 11.1 mM, which is nearly same as the critical micelle concentration (CMC, 11.6 mM) of SGC. However, with no addition of bile salts and below CMC, the permeation was very limited and irratic, indicating that LS itself is very poor permeable. Higher protions of bile salt in SD such as LS-SDC or LS-SGC (1 : 49 and 1 : 69) showed highly promoted fluxes. In conclusion, SD systems with bile salts, which may form their micelles in intestinal fluids, might be a promising means for providing enhanced dissolution and intestinal permeation of practically insoluble and non-absorbable LS.

Inhibition Effects Against Plant Pathogenic Fungi and Plant Growth Promotion by Beneficial Microorganisms (유용 미생물을 활용한 식물 병원 곰팡이의 억제와 식물 생장촉진 효과)

  • Jung, Jin Hee;Kim, Sang Woo;Kim, Yun Seok;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.118-126
    • /
    • 2013
  • The experiment was carried out to analyze the inhibition effect of plant pathogenic fungi and growth promotion activity induced by the bacterial strains isolated from peatmoss. Among the isolated bacterial strains, B10-2, B10-4, B10-5 and B10-6 which showed more than 30% inhibition rate against Botrytis cinerea and Rhizoctonia solani in vitro, were further analyzed in the greenhouse for the growth promotion activity on lettuce (Lactuca sativa), pak-choi (Brassica compestris L. ssp. chinensis) and Chinese cabbage (Brassica campestris L. ssp. pekinensis). The results showed the treatment of B10-4 on lettuce showed the highest growth promotion activity with the leaf area ($169.17cm^2$), fresh weight (leaf: 40.29 g, root: 8.80 g)and dry weight (leaf: 11.24 g, root: 4.17 g), which was about two folds as compared to control. On pak-choi, the growth promotion rate was the highest with the leaf area of $112.87cm^2$, leaf fresh weight of 60.70 g, root fresh weight of 3.37 g, leaf dry weight of 14.34 g, and root dry weight of 1.90 g. As a result of treatment of B10-13 on chinese cabbage, the growth promotion rate was the highest with the leaf area ($293.56cm^2$), fresh weight (leaf: 113.67 g, root: 2.40 g) and dry weight (leaf: 6.03 g, root: 0.53 g). The production of Indole Acetic Acid (IAA) and Indole-3-Butylic Acid (IBA) were also analyzed in these bacterial isolates. The IAA and IBA analyses were carried out in all bacterial isolates each day within the 5 days of incubation period. The highest production of IAA was observed with $112.57{\mu}g/mg$ protein in B10-4 after 3 days of incubation and IBA production was the highest in B10-2 with $58.71{\mu}g/mg$ protein after 2 days of incubation. Also, phosphate solubilizing activity was expressed significantly in B10-13 in comparison to that of other bacterial isolates. Bacterial identification showed that B10-2 was Bacillaceae bacterium and B10-5 was Bacillus cereus, B10-4 and B10-6 were Bacillus sp. and B-13 was Staphylococcus sp. by ITS sequence.

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field (경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향)

  • An, Chang-Hwan;Lim, Jong-Hui;Kim, Yo-Hwan;Jung, Byung-Kwon;Kim, Jin-Won;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.