• Title/Summary/Keyword: Phosphate monomer

Search Result 36, Processing Time 0.026 seconds

Purification of Aldose Reductase and Decolorization of Dye by the Enzyme

  • Jang, Mi;Kim, Kyung-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.358-361
    • /
    • 2009
  • Aldose reductase was purified to electrophoretic homogeneity from porcine liver. The purified enzyme was a monomer of 36 kDa. The enzyme was strongly inhibited by $Cu^{2+}\;and\;Mg^{2+}$ ions. Incubation of the enzyme with pyridoxal 5'-phosphate led to complete inhibition of enzymatic activity, suggesting that lysine residue is involved at or near the active site of the enzyme. The enzyme exhibited a broad substrate specificity. Furthermore, the enzyme was capable of decolorizing Alizarin, an anthraquinone dye.

Isolation of Pseudomonas putida BM01 Accumulating High Amount of $PHA_{MCL}$

  • Song, Jae-Jun;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.126-133
    • /
    • 1994
  • A Pseudomonas putida strain able to accumulate high amount of polyesters of medium-chain-length 3-hydroxyalkanoic acids ($PHA_{MCL)$) was isolated from soil in a landfill site using an enrichment technique. Culture condition of the isolated strain for polyester production in a one-step culture was optimized in a mineral-salts medium against pH and concentrations of ammonium sulfate, carbon source(e.g., octanoate), and phosphate. The optimal values for maximal cell growth and PHA accumulation were: pH; 7$\sim$8, $(NH_4)_2SO_4$; 8 mM, octanoate; 40 mM. The optimum temperature was in the range of $20\sim30^{\circ}C$, which was rather broader than in other bacteria. Cell growth was strongly inhibited by the phosphate limitation to less than 1 mM. An increase of phosphate concentration above 1 mM showed little effect on cell growth and polyester accumulation. When the strain was grown on octanoate under this optimized condition it produced 3.4 g dry biomass per liter and yielded 1.7 g PHA per liter amounting to 53 wt% of dry cells. The monomer units composing the polyester synthesized from octanoate were 3-hydroxyoctanoate (3HO), 3-hydroxycaproate (3HC), and 3-hydroxybutyrate (3HB) (85:13:2, mole ratio). Other low linear $C_3\simC_{10}$ monocarboxylic acids were also tested for polyester production.

  • PDF

In vitro shear bond strength between fluorinated zirconia ceramic and resin cements

  • Tanis, Merve Cakirbay;Akay, Canan;Akcaboy, Turgut Cihan;Sen, Murat;Kavakli, Pinar Akkas;Sapmaz, Kadriye
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.205-210
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate the efficiency of a gas-phase fluorination method under different fluorination periods through using two resin cements. MATERIALS AND METHODS. 84 zirconia specimens in dimensions of $5mm{\times}5mm{\times}2mm$ were prepared and surface treated with $50{\mu}m$ aluminum oxide particles or gas phase fluorination for 2 min, 5 min, or 10 min. One specimen in each group was surface analyzed under scanning electron microscope. The remaining specimens were bonded to composite cylinders in dimensions of 2 mm diameter and 3 mm high with Panavia SA Plus or Variolink N. Then, the specimens were stored in $37^{\circ}C$ distilled water for 24 hours and shear bond strength test was applied at a speed of 1 mm/min. RESULTS. The highest shear bond strength values were observed in the samples fluorinated for 5 minutes and cemented with Panavia SA Plus. Variolink N did not elicit any statistical differences between surface treatments. Panavia SA Plus resin cement and Variolink N resin cements featured statistically significant difference in shear bond strength values only in the case of 5 minutes of fluorination treatment. CONCLUSION. According to the results of this study, application of 5 minutes of fluorination with 10-methacryloyloxydecyl dihydrogen phosphate monomer (MDP) containing Panavia SA Plus resin cement increased the resin bond strength of zirconia. Fluorination of the zirconia surface using conventional resin cement, Variolink N, did not lead to an increase in bond strength.

Evaluation of shear-bond strength between different self-adhesive resin cements with phosphate monomer and zirconia ceramic before and after thermocycling (인산염계 기능성 단량체가 첨가된 수종의 자가 접착 레진시멘트와 지르코니아 세라믹 사이 열순환 전후 전단결합강도 비교)

  • Lee, Ji-Hun;Kim, Min-Kyung;Lee, Jung-Jin;Ahn, Seung-Geun;Park, Ju-Mi;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.318-324
    • /
    • 2015
  • Purpose: This study compared shear bond strengths of five self-adhesive cements with phosphate monomer to zirconium oxide ceramic with and without airborn particle abrasion. Materials and methods: One hundred zirconia samples were air-abraded ($50{\mu}mAl_2O_3$). One hundred composite resin cylinders were fabricated. Composite cylinders were bonded to the zirconia samples with either Permacem 2.0 (P), $Clearfil^{TM}$ SA Luting (C), $Multilink^{(R)}$ Speed (M), $RelyX^{TM}$ U200 Automix (R), G-Cem $LinkAce^{TM}$ (G). All bonded specimens were stored in distilled water ($37^{\circ}C$) for 24 h and half of them were additionally aged by thermocycling ($5^{\circ}C$, $55^{\circ}C$, 5,000 times). The bonded specimens were loaded in shear force until fracture (1 mm/min) by using Universal Testing Machine (Model 4201, Instron Co, Canton, MA, USA). The failure sites were inspected under field-emission scanning electron microscopy. The data was analyzed with ANOVA, Tukey HSD post-hoc test and paired samples t-test ($\alpha$=.05). Results: Before and after thermocycling, $Multilink^{(R)}$ Speed (M) revealed higher shear-bond strength than the other cements. G-Cem $LinkAce^{TM}$ (G) showed significantly lower bond strengths after thermocycling than before treatment (P<.05), but the other groups were not significantly different (P>.05). Conclusion: Most self-adhesive cements with phosphate monomer showed high shear bond strength with zirconia ceramic and weren't influenced by thermocycling, so they seem to valuable to zirconia ceramic bonding.

Crystal Structure and Molecular Mechanism of Phosphotransbutyrylase from Clostridium acetobutylicum

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1393-1400
    • /
    • 2021
  • Acetone-butanol-ethanol (ABE) fermentation by the anaerobic bacterium Clostridium acetobutylicum has been considered a promising process of industrial biofuel production. Phosphotransbutyrylase (phosphate butyryltransferase, PTB) plays a crucial role in butyrate metabolism by catalyzing the reversible conversion of butyryl-CoA into butyryl phosphate. Here, we report the crystal structure of PTB from the Clostridial host for ABE fermentation, C. acetobutylicum, (CaPTB) at a 2.9 Å resolution. The overall structure of the CaPTB monomer is quite similar to those of other acyltransferases, with some regional structural differences. The monomeric structure of CaPTB consists of two distinct domains, the N- and C-terminal domains. The active site cleft was formed at the interface between the two domains. Interestingly, the crystal structure of CaPTB contained eight molecules per asymmetric unit, forming an octamer, and the size-exclusion chromatography experiment also suggested that the enzyme exists as an octamer in solution. The structural analysis of CaPTB identifies the substrate binding mode of the enzyme and comparisons with other acyltransferase structures lead us to speculate that the enzyme undergoes a conformational change upon binding of its substrate.

Effect of Fatty Acid Salts on Proteolysis of Insulin in the Nasal Tissue Homogenates of Rabbits (흡수촉진제인 지방산염이 토끼의 비강점막 균질액에서 인슐린 분해에 미치는 영향)

  • Han, Kun;Cha, Cheol-Hee;Chung, Youn-Bok;Park, Cheong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.97-104
    • /
    • 1992
  • The purpose of this study was (i) to determine whether protease inhibition by medium chain fatty acids such as sodium caprate, sodium caprylate and sodium laurate led to suppression of insulin proteolysis over a range of insulin concentrations and (ii) elucidate preventing effect of the enhancers on molecular self-association of insulin in pH 7.4 phosphate buffer isotonic solution. To this end, the rate of insulin proteolysis in nasal tissue supernatants of the albino rabbits was determined in the presence of $0.1{\sim}2%$ sodium caprylate, sodium caprate and sodium laurate at insulin concentrations ranging from $5\;to\;100\;{\mu}M$. At fatty acid salts concentration lower than 0.5%, insulin proteolysis was accelerated but the enhancers of high concentration (>1%) reduced the rate of insulin proteolysis. These effects were dependent upon insulin concentration and chain length of fatty acid salts. Circular dichroism spectra of insulin solutions were then determined. Monomer fraction of insulin was increased with increasing sodium caprate. Therefore, half-life decrease of insulin at low concentrations of the enhancers was attributed to deaggregation of insulin by the enhancers, increasing the proportion of monomers available for nasal proteolysis. And the increase of half-life at high concentration of the enhancers was attributed to inhibitory effect on protease rather than the effect of monomer fraction.

  • PDF

Copolymerization of Diethyl ${\alpha}$-Phenylvinyl Phosphate with Acrylonitrile and Maleic Anhydride (디에틸 ${\alpha}$-페닐비닐인산과 아크릴로니트릴 및 말레산무수물의 자유라디칼 혼성중합)

  • Jung-Il Jin;Hong-Ku Shim;Soo-Min Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.287-293
    • /
    • 1983
  • Free radical-initiated copolymerizations of diethyl ${\alpha}$-phenylvinyl phospbate (DEPVP) with acrylonitrile (AN) and maleic anhydride (MAnh) were studied. The monomer reactivity ratios for AN/DEPVP pair, determined at $70^{\circ}C$ in bulk using benzoyl peroxide as an initiator, were;$ r_1(AN) = 0.77, r_2(DEPVP) = 0.002$. The values of the Alfrey-Price constants, Q and e, for DEPVP were calculated to be 0.012 and -1.35, respectively. Free radical-initiated copolymerization of MAnh/DEPVP pair in chloroform at $70^{\circ}C$ produced 1 : 1 alternating copolymers regardless monomer feed composition with the highest copolymerization rate at the molar ratio of MAnh : DEPVP = 7 : 3. The equilibrium constant of a charge-transfer complex between DEPVP and MAnh in deutrated chloroform, determinated at room temperature by transformed Benesi-Hildebrand NMR method, was 0.085 l/mol. The reduced viscosity of copolymers of AN/DEPVP pair decreased as the content of DEPVP units increased, while that of MAnh/DEPVP pair remained more or less constant.

  • PDF

Studies on the Immobilization of Enzymes and Microoganism Part 1. Immobilizing Method of Glucose Oxidase by Gamma Radiation (효소 및 미생물의 고정화에 관한 연구 제1보. 방사선조사에 의한 Glucose Oxidase의 고정화법)

  • Kim, Sung-Kih
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 1979
  • A new method for immobilization of glucose oxidate by the aerobic gamma radiation of synthetic monomers was developed. The radiocopolymerization was conducted aerobically at -70 to -8$0^{\circ}C$ with the mixture of several polyfunctional esters, acrylates and native enzyme. The retained activity of immobilized glucose oxidase was about 50 to 55% when a NK 23G ester, acrylamide-bis and water mixture (1:1:2) in cold toluene treated with 450 krad of gam-ma radiation. The radiation dose did not influence significantly to the enzyme activity. The solvents used to prepare the beads of glucose oxidase and monomers were toluene, n-hexane, petoleum ether and chloroform. 0.05M tris-gycerol (pH 7.0) was a more suitable bugger solution for immobilizing the enzyme than was 0.02M phosphate. Immobilization of glucose oxidase shifted the optimum pH for its reaction from 6.0 to 6.5. The pH profile for the immobilized enzyme showed a broad range of optimum activity while the native enzyme gave a sharp pick for its optimum pH value. The immobilized enzyme reaction temperature was at the range of 30~4$0^{\circ}C$.

  • PDF

Electrochemical Polymerization of Ruthenium(II) Complex and Application to Acetaminophen Analysis

  • Kannan, Sethuraman;Son, Jung-Ik;Yang, Jee-Eun;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1341-1345
    • /
    • 2011
  • A novel ruthenium(II) complex, [$RuCl_2(DMSO)_2$(PhenTPy)] has been synthesized by the condensation of $RuCl_2(DMSO)_4$ with (1-(1,10-phenanthrolinyl)-2,5-di(2-thienyl)-1H-pyrrole)[PhenTPy] in $CHCl_3$ solution. The [$RuCl_2(DMSO)_2$(PhenTPy)] complex modified electrode was fabricated through the electropolymerization of the monomer in a 0.1 M tetrabutylammonium perchlorate (TBAP)/$CH_2Cl_2$ solution, to take advantage of the electronic communication between metal ion center by the conjugated backbone. The UV-visible spectroscopy (UV), mass spectrometry (MS), and cyclic voltammetry (CV) were employed to characterize the [$RuCl_2(DMSO)_2$(PhenTPy)] complex and its polymer (poly-Ru(II)Phen complex). The poly-Ru(II)Phen complex modified electrode exhibited an electrocatalytic activity to the oxidation of acetaminophen and the catalytic property was used for the analysis of acetaminophen at the concentration range between 0.09 and 0.01 mM in a phosphate buffer solution (pH 7.0).

Biochemical Characteristics of a Palmitoyl Acyl Carrier Protein Thioesterase Purified from Iris pseudoacorus

  • Kang, Han-Chul;Hwang, Young-Soo
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 1996
  • The palmitoyl acyl carrier protein (ACP) specific thioesterase (EC 3.1.2.14) from Iris pseudoacorus was purified and characterized. The thioesterase which was very unstable in relatively high salt concentrations was eluted using a co-gradient of Triton X-100 and low concentration of KCl or Na-phosphate from Q-Sepharose, DEAE-Sepharose, and hydroxyapatite chromatography. SDS-PAGE analysis showed a single band with a molecular weight of 35,000. The native molecular weight of approximately 37,000 was estimated by Sephacryl S-200 chromatography, indicating that the enzyme is a monomer. The thioesterase activity was inhibited about 75% and 50% by N-ethylmaleimide (2 mM) and phenylmethylsulfonyl fluoride (2 mM). respectively. The N-ethylmaleimide-inactivation was protected by sodium palmitate but the inactivation with phenylmethylsulfonyl fluoride was not protected. Oxidation of thiols by 2 mM 5.5'-dithio-bis-(2-nitrobenzoic acid) resulted in 65% inactivation of the enzyme. These results suggest that a cysteinyl residue is essential to the catalytic reaction of the enzyme. The enzyme activity was increased by sodium citrate and also by $Cu^{2+}$

  • PDF