• Title/Summary/Keyword: Phosphate ion

Search Result 350, Processing Time 0.025 seconds

Water Permeability Performance Evaluation of Mortar Containing Crack Self-healing Mineral Admixtures (균열 자기치유 재료 혼입 모르타르의 투수성능 평가)

  • Lee, Woong-Jong;Hwang, Ji-Soon;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, compressive strength and water permeability performance for two types of crack self-healing materials such as SH-PO-0 composed of mineral admixtures(expansive agent, swelling material and crystal growth agent) and SH-PO-(5, 15, 30) blended with SH-PO-0 and phosphate additive(PO) dissolving easily calcium ion, were evaluated. The test results show that the water flow of SH-PO-0 decreased steeply at the early age although compressive strength decreased about 9% at 28 days compared with OPC. The higher PO replacement ratio is, the lower compressive strength and more improved water permeability performance is, and thus, based on such results, adequate PO replacement ratio is 15%. It is also found that the self-healing performance of SH-PO-15 was quite improved at the early ages and however, the performance of SH-PO-15 is similar to one of SH-PO-0 at long-term ages, and 28 days compressive strength of SH-PO-15 decreased about 8% compared with SH-PO-0. In addition, it is confirmed from the analysis of SEM-EDS that calcium ions of SH-PO-15 were crystallized more than those of SH-PO-0.

In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker (과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성)

  • Oh, Si-Jin;Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Myong-Hoon;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The gel polymer electrolyte(GPE) were prepared by in-situ thermal cross-linking reaction of homogeneous precursor solution of perfluorinated phosphate-based cross-linker and liquid electrolyte. Ionic conductivities and electrochemical properties of the prepared gel polymer electrolyte with the various contents of liquid electrolytes and perfluorinated organophosphate-based cross-linker were examined. The stable gel polymer electrolyte was obtained up to 97 wt% of the liquid electrolyte. Ionic conductivity and electrochemical properties of the gel polymer electrolytes with the various chain length of perfluorinated ethylene oxide and different content of liquid electrolytes were examined. The maximum ionic conductivity of liquid electrolyte was measured to be $1.02\;{\times}\;10^{-2}\;S/cm$ at $30^{\circ}C$ using the cross-linker($PFT_nGA$). The electrochemical stability of the gel polymer electrolyte was extended to 4.5 V. The electrochemical performances of test cells composed of the resulting gel polymer electrolyte were also studied to evaluate the applicability on the lithium polymer batteries. The test cell carried a discharge capacity of 136.11mAh/g at 0.1C. The discharge capacity was measured to be 91% at 2C rate. The discharge capacity decreased with increase of discharge rate which was due to the polarization. After 500th charge/discharge cycles, the capacity of battery decreased to be 70% of the initial capacity.

Analysis of Methamphetamine and Amphetamine in Oral Fluid of Eleven Drug Abusers (마약남용자 11명의 타액 중 메스암페타민의 분석)

  • Kim, Eun-Mi;Lee, Ju-Seon;Choi, Hye-Young;Choi, Hwa-Kyung;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.419-425
    • /
    • 2008
  • A qualitative and quantitative analytical method was developed for detection of methamphetamine (MA) and its main metabolite amphetamine (AM) in oral fluid. Oral fluids of eleven drug abusers were provided by Police, specimens were collected by stimulation with a cotton swab treated with 20 mg of citric acid ($Salivette^{(R)}$; Sarstedt, USA). As the preliminary test, oral fluid samples were screened for amphetamines by Fluorescence Polarization Immunoassay (TDxFLx, Abbott Co.). Extraction for MA was performed using solid-phase extraction (SPE) by $RapidTrace^{TM}$ (Zymark, USA) with mixed mode cation exchange cartridge, CLEAN $SCREEN^{(R)}$ (130 mg/3 ml, UCT) after dilution with phosphate buffer. Samples were evaporated and derivatized by pentafluoropropionic acid anhydride (PFPA). Quantitation of MA and AM was performed by gas chromatography-mass spectrometry (GC-MS) using selective ion monitoring (SIM), the quantitation ions were m/z 204 (MA), 208 (MA-$D_5$), 190 (AM) and 194 (AM-$D_5$). The selectivity, linearity of calibration, limit of detection (LOD) and quantification (LOQ) within- and between day precision, accuracy and recoveries were examined as parts of the method validation. All oral fluid samples gave positive results to immunoassay for MA (cut-off level, 50 ng/ml as d-amphetamine). Concentrations of MA and AM by GC-MS in eleven samples were ranged 104.2${\sim}$4603.3 ng/ml and 32.4${\sim}$268.6 ng/ml, respectively. Extracted calibration curves of MA and AM were linear over the two concentration range of 1${\sim}$100 and 50${\sim}$1000 ng/ml with correlation coefficient of above 0.999. LOQ of MA and AM was 1 and 3 ng/ml, respectively. The intraand inter-day run precisions (CV) for MA and AM were less than 10%, and the accuracies (bias) for MA and AM were also less than 10% at the two different concentrations 5 and 100 ng/ml at low calibration range, 50 and 1000 ng/ml at high calibration range. The absolute recoveries of MA and AM at low and high calibration ranges were more than 82% and 75%, respectively. In this study the qualitative and quantitative analytical method of MA in oral fluid was established. Oral fluid testing may detect drug use in past hours because of its shorter detection window than urine, and be useful in post-accident situations. So oral fluids will be most useful for testing drug abuse in the driving under the influence of drug (DUID) as the alternative specimens of urine.

Characteristics of Fluoride Releasing of Anodized Titanium Implant (양극산화 아크방전 처리한 티타늄 임플란트의 불소방출 특성)

  • Kim, Ha-young;Song, Kwang-yeob;Bae, Tae-sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The purpose of this study is to make porous oxide film on the surfaces of pure Ti through anodic spark discharge in electrolytic solution containing calcium and phosphate ions, to improve osseointergration by treating fluoride agent. In addition, it is to evaluate the fluoride modified effect on the surface. Commercial pure Ti plate with $20{\times}10{\times}2mm$ and Ti wire with a diameter of 1.5mm and a total length of 15mm were used. After making titanium oxide films converted by anodic spark discharge, anodizing was performed. Fluoride was spreaded to titanium laboratory plate and maintained for 30 minutes after anodizing breakdown. Fluoride ion discharge amount was measured per 24 hours after dipping titanium plate into saline (10ml) and sustaining 90rpm in a pyrostat. Some plates and wires were dipped in Hanks solutions for a month to examine biocompatibility using SEM and XRD. $TiO_2$ film formed by anodic discharge technique showed great roughness and uniform pores which were $1{\sim}3{\mu}m$ in a diameter. Roughness of the films treated with anodic discharge after blasting were higher than the turned ones(P<0.05). Rapid surface activity was observed in the samples treated with $TiF_3$ agent, which immersed in Hanks solution for 30 days. Taking the results into consideration, the fluoride modified implant with anodic discharge demonstrates that it makes uniformly porous oxide film on the surface of implant and properly increase roughness for osseointegration. The implants will achieve greater bone integration after short healing time by improving surface activity.

Physico-Chemical Characteristics of Aquacultural Discharging Water in Jeju Island (제주도내 양식장 배출수의 이화학적 특성 분석)

  • Kim, Man-Chul;Jang, Tae-Won;Han, Yong-Jae;Kim, Ju-Sang;Harikrishnan, Remasamy;Oh, Duck-Chul;Kim, Ki-Young;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.943-948
    • /
    • 2009
  • Physical and chemical analyses of water discharged from 4 crowded farms (Sungsan, Pyosun, Wimi and Daejung) in Jeju island were performed from July, 2006 to Dec, 2006, and the result of the analyses showed that hydrogen ion concentrations (pH) for water discharged from Sungsan farm was 7.74, Pyosun was 7.68, Wimi was 7.68 and Daejung was 7.7. Salinity levels for Sungsan, Pyosun and Wimi had an average of 31$\sim$33 $^\circ$/$_\circ$$_\circ$ indicating characteristics of far distance areas, whereas that of Daejung was 28.81 %, which was far lower compared to regular sea water salinity. As the result of measuring dissolved oxygen (DO) for each area, each area showed first graded DO for each discharged water based on water quality level for each sea district. The result of measuring the temperature for discharged water showed that water temperatures for summer were 23$\sim$25$^\circ$C, and those for winter were 16$\sim$ 18$^\circ$C. Nitrogen concentrations for discharged water exceeded each sea area's water quality level in all farms. In the case of phosphate, its average value was 0.48 mg/l for Sungsan, 0.55 mg/I for Pyosun, 0.66 mg/I for Wimi, and 0.44 mg/l for Daejung, and chemical oxygen demand (COD) was shown to be 1.5 mg/l 1.8 mg/I, 1.6 mg/I and 2.3 mg/I for Sungsan, Pyosun, Wimi and Daejung respectively. For suspended solids (SS), the average concentration was 19.3 mg/I, 21.2 mg/I, 21.3 mg/I and 18.5 mg/I for Sungsan, Pyosun, Wimi and Daejung respectively. The results of physical and chemical analyses for discharged water in farms based on time showed that almost all items were shown to increase in the forenoon and decrease, overall, in the afternoon.

Studies on the Acid Sulphate Soils - Effect of the Rice Plant Growth by Amounts of Lime Application on No-Percolation and Percolation - (산성(酸性) 유산염(硫酸鹽) 토양(土壤)에 관(關)한 연구(硏究) - 투수(透水)에 의(依)한 석회(石灰) 시용량(施用量)이 수도생육(水稻生育)에 미치는 영향(影響) -)

  • Ha, H.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 1970
  • This experiment was conducted to investigate the influence of amounts of lime dressed on the growth of rice by the treatment of percolation and nonpercolation in the acid sulphate soil. And also analysis of soil chemical components after treatment was carried out. The results obtained were summarized as follows: 1. In the initial stage of growth, number of tillers and plant length showed no distinct differences between the treatments of percolation and nonpercolation, but after August the effect of lime appeared and the percolation treatment was more effective than the nonpercolation. 2. Lime dressing affected good influence on the panicles, grain per panicles and the rate of grain formation, and the treatment of percolation showed better results than nonpercolation. 3. If the yield of rough rice in the control (nonpercolation and lime dressing) was 100, it was 194 in the treatment of nonpercolation 12me/100gr of lime dressed, 268 in the treatment of percolation-4me/100gr of lime and 315 in the 8me/100gr-percolation. 4. Lime dressing affected good influence on the control of Helminthosporium leaf spots. 5. In the case of lime dressing, amounts of available phosphate and soluble silicon dioxide were increased, but ferrous ion ($Fe^{{+}{+}}$) were decreased.

  • PDF

Effect of Precipitator and Quantity on the Formation of Fe3(PO4)2 (Fe3(PO4)2 생성에 미치는 침전제와 첨가량의 영향)

  • An, Suk-Jin;Lee, Sun-Young;Oh, Kyoung-Hwan;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.587-591
    • /
    • 2011
  • The effect of the precipitator (NaOH, $NH_4OH$) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of $Fe_3(PO_4)_2$, which is the precursor used for cathode material $LiFePO_4$ in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine $LiFePO_4$ was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml $FeSO_4$(1M) and 100 ml $H_3PO_4$(1M). The concentration of the NaOH and $NH_4OH$ solution was 1 M. The reaction temperature (25$^{\circ}C$) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of $Fe^{2+}$. Single phase $Fe_3(PO_4)_2$ was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml $NH_4OH$ solutions were added. However, $Fe_3(PO_4)_2$ and $NH_4FePO_4$ were formed when 250 and 300 ml $NH_4OH$ was added. The morphology of the $Fe_3(PO_4)_2$ changed according to the pH. Plate-like lenticular shaped $Fe_3(PO_4)_2$ formed in the acidic solution below pH 5 and plate-like rhombus shaped $Fe_3(PO_4)_2$ formed around pH 9. For the $NH_4OH$, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and $NH_4OH$. It is believed that the formation mechanism of $Fe_3(PO_4)_2$ is quite different between NaOH and $NH_4OH$. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.

Study on the Morphological Change and Reduction Plan of Nitrogen and Phosphorous in Litter and Manure of Cow House (우사의 깔짚과 퇴비에 있는 질소와 인의 형태적 변화와 저감 방안에 관한 연구)

  • Kim, Younjung;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.4
    • /
    • pp.249-253
    • /
    • 2021
  • Litter and manure were obtained at a cow house of a livestock farm in Andondg city. We examined the change of formation of nitrogen and phosphorous from these samples and tried to suggest a more useful and realistic way for removing them. Constituent and its content of sample were identified by XRF. NO2-, NO3-, and PO43- ions and NH4+, T-P and T-N released from sample were analyzed using ion chromatograph and UV/Vis spectrometry, respectively. As the results of this study, the ammonia nitrogen in the early stage of cow excretion is a need to make an ammonia gas state that can be immediately volatile by increasing the pH. Nitrogen and phosphorous, the main source of nutrition in green algal bloom can be removed by transforming insoluble salts such as calcium phosphate (CaHPO4·3H2O) and struvite (NH4MgPO4·6H2O), respectively, with addition of Ca and Mg after stimulating fermentation of manure.

Growth Characteristics and Comparative Proteome Analysis of Adzuki Bean Leaves at the Early Vegetative Stage under Waterlogging Stress (논 토양 조건에서 팥 유묘기의 생육특성과 단백질 발현 양상)

  • Hae-Ryong Jeong;Soo-Jeong Kwon;Sung-Hyun Yun;Min-Young Park;Hee-Ock Boo;Hag-Hyun Kim;Moon-Soon Lee;Sun-Hee Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.211-221
    • /
    • 2022
  • Recently, the demand for the cultivation of upland soil has been increasing, and the rate of conversion of paddy soil into upland soil is also increasing. Theincrease in uneven precipitation due to climate change has resulted in dramatic effects of waterlogging stress on upland crops. Therefore, the present study was conducted to investigate the changes in growth characteristics and the expression patterns of proteins at the two-leaf stage of adzuki beans. The domestic cultivar, Arari (Miryang No. 8), was used to test waterlogging stress. At the two-leaf stage of adzuki beans, plant height slightly decreased androot fresh weight showed significant changes after 3 days of waterlogging treatment. Chlorophyll content was also significantly different after 3 days of waterlogging treatment compared to its content in control plants. Using two-dimensional gel electrophoresis, more than 400 protein spots were identified. Twenty-one differentially expressed proteins from the two-leaf stage were analyzed using linear trap quadrupole-Fourier transform-ion cyclotron resonance mass spectrometry. Of these 21 proteins, 9 were up-regulated and 12 were down-regulated under waterlogging treatment. Protein information resource (https://pir.georgetown.edu/) categories were assigned to all 49 proteins according to their molecular function, cellular component localization, and biological processes. Most of the proteins were found to be involved in the biological process, carbohydrate metabolism and were localized in chloroplasts.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).