• Title/Summary/Keyword: Phosphatase inhibition

Search Result 193, Processing Time 0.03 seconds

Effect of lithium on endothelial-dependent relaxation to melatonin in rat aorta (흰쥐 대동맥에서 melatonin의 내피 의존적 혈관 이완 작용에 대한 lithium의 영향)

  • Kim, Shang-Jin;Yu, Xianfeng;Cho, In-Gook;Kang, Hyung-Sub;Kim, Jin-Shang
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.553-562
    • /
    • 2005
  • Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. Lithium inhibits both inositol polyphosphate phosphatase (IPPase) and inositol monophosphatase (IMPase), which are involved in a wide range of signal transduction pathways. The aim of the present study was to assess the effect of lithium on endothelial-dependent relaxation to melatonin and on the melatonin-induced inhibition of contraction by phenylephrine (PE) in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in PE-precontracted in endothelium-intact (+E) aortic rings. Melatonin inhibited a PE-induced sustained contraction in +E aortic rings. These effects of melatonin on relaxation and contractile responses were inhibited by pretreatment with lithium. In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxations and the inhibitory effects of melatonin on maximal contractions were inhibited by endothelium removal or by pretreatment with L-$N^G$-nitro-arginine (L-NNA), 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ) and nifedipine and verapamil, but not by tetrabutylammonium, clotrimazole and glibenclamide, However, in endothelium-denuded (-E) aortic rings and in the presence of L-NNA and ODQ in +E aortic rings, the melatonin-induced residual relaxations and the melatonin-induced residual contractile responses to PE were not affected by lithium. It is concluded that the inositol phosphate pathway may be involved in endothelial-dependent relaxation induced by melatonin.

Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats

  • Belaid-Nouira, Yosra;Bakhta, Hayfa;Haouas, Zohra;Flehi-Slim, Imen;Cheikh, Hassen Ben
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.466-474
    • /
    • 2013
  • Despite the reports on safety concerns regarding the relationship between aluminum salts and neurological and bone disease, many countries continue to use aluminum as phosphate binders among patients with renal failure. In search for a diet supplement that could reduce aluminum toxicity related to renal failure, we carried out this prospective animal study in which the fenugreek seeds were assessed for their effects on rats nephrotoxicity induced by aluminum chloride ($AlCl_3$). Oral $AlCl_3$ administration during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) led to plasma biochemical changes, an inhibition of alkaline phosphatase (ALP), a decrease of total antioxidant status (TAS), and an induction of lipid peroxidation (LPO) in the blood and brain, in addition to kidney atrophy and morphological alterations at the level of Bowman's capsule, the glomerulus and different sorts of tubules, reminiscent of some known kidney disease. The treatment with the whole fenugreek seed powder (FSP) (5% in the diet) during the last 2 months showed its effectiveness in restoring normal plasma values of urea, creatinine, ALP and glucose, as well as re-increasing the TAS, inhibiting LPO and alleviating histopathological changes in the injured kidneys. This study highlights the induced nephrotoxicicity, as well as the related toxicity in the brain and bone, by chronic oral ingestion of the aluminum salts. However, the maintenance of a diet supplemented with fenugreek seeds could offer protection for the kidney, bone and brain, at the same time.

Inhibition Effects of Natural Products on Osteoclast Differentiation (천연물 추출물의 파골세포 분화억제 효과 검색)

  • Lee, Hyo-Jung;Yu, Mi-Hee;Lee, Syng-Ook;Kim, Hyun-Jeong;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.997-1004
    • /
    • 2005
  • In bone remodeling imbalances that are caused by increased bone resorption over bone formation lead to adult skeletal diseases. Thus, we have screened various natural products for their ability to regulate the differentiation of osteoclasts to propose candidates for the prevention or treatment of osteoporosis. Scutellaria baicalensis Georgi and Zizyphus Jujuba Miller var. extracts of 140 natural products inhibited the differentiation of RAW264.7 cells into osteoclast, as showed by the reduced number of tartrate resistant acid phosphatase(TRAP)-positive multinucleated cells and decreased TRAP activity.

Korean Red Ginseng Improves Vascular Stiffness in Patients with Coronary Artery Disease

  • Chung, Ick-Mo;Lim, Joo-Weon;Pyun, Wook-Bum;Kim, Hye-Young
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.212-218
    • /
    • 2010
  • Korean red ginseng (KRG) has been shown to enhance endothelium-dependent vasorelaxation in experimental animals; however, little is known about its pharmacological effects on vascular stiffness in patients with coronary artery disease (CAD). This randomized, double-blind, placebo-controlled crossover trial was carried out to determine whether KRG has beneficial effects on arterial stiffness, cardiovascular risk factors such as plasma lipid profiles and blood pressure (BP), and Rho-associated kinase (ROCK) activity. Twenty patients (mean age, 62.5 years) with stable angina pectoris were given KRG (2.7 g/day) and a placebo alternatively for 10 weeks. Blood biochemical analysis and pulse wave velocity (PWV) recording were performed on day 0 and after the completion of each treatment. ROCK activity was assessed based on the level of phospho-$Thr^{853}$ in the myosin-binding subunit of myosin light chain phosphatase, determined by Western blot analysis of peripheral blood mononuclear cells. KRG significantly decreased the systolic BP, brachial ankle PWV, and heart femoral PWV in the patients (all p<0.05), but did not significantly alter the serum lipid profiles, including triglycerides and total, high-density lipoprotein, and low-density lipoprotein cholesterol levels. The ROCK activity tended to decrease (p=0.068) following KRG treatment. The placebo did not significantly alter any of the variables. In conclusion, KRG decreased systolic BP and arterial stiffness, probably via the inhibition of ROCK activity, in patients with CAD, but had a neutral effect on serum lipid profiles. Our data suggest that KRG has a therapeutic effect on CAD.

Xylitol Down-Regulates $1{\alpha},25$-Dihydroxy Vitamin D3-induced Osteoclastogenesis via in Part the Inhibition of RANKL Expression in Osteoblasts

  • Ohk, Seung-Ho;Jeong, Hyunjoo;Kim, Jong-Pill;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Lee, Syng-Ill
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.127-134
    • /
    • 2013
  • Xylitol is a sugar alcohol with a variety of functions including bactericidal and anticariogenic effects. However, the cellular mechanisms underlying the role of xylitol in bone metabolism are not yet clarified. In our present study, we exploited the physiological role of xylitol on osteoclast differentiation in a co-culture system of osteoblastic and RAW 264.7 cells. Xylitol treatment of these co-cultures reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells induced by 10 nM $1{\alpha},25(OH)_2D_3$ in a dose-dependent manner. A cell viability test revealed no marked cellular damage by up to 100 mM of xylitol. Exposure of osteoblastic cells to xylitol decreased RANKL, but not OPG, mRNA expression in the presence of $10^{-8}M$ $1{\alpha},25(OH)_2D_3$ in a dose-dependent manner. Furthermore, bone resorption activity, assessed on bone slices in the coculture system, was found to be dramatically decreased with increasing xylitol concentrations. RANKL and OPG proteins were assayed by ELISA and the soluble RANKL (sRANKL) concentration was decreased with an increased xylitol concentration. In contrast, OPG was unaltered by any xylitol concentration in this assay. These results indicate that xylitol inhibits $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis by reducing the sRANKL/OPG expression ratio in osteoblastic cells.

Kojic Acid, a Potential Inhibitor of NF-$textsc{k}$B Activation in Transfectant Human HaCaT and SCC-13 Cells

  • Moon, Ki-Young;Ahn, Kwang-Seok;Lee, Jin-seon;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.307-311
    • /
    • 2001
  • The activation of NF-$\kappa$B induced by kojic Acid, an inhibitor of tyrosinase for biosynthesis of melanin in melanocytes, was investigated in human transfectant HaCaT and SCC-13 cells. These two keratinocyte cell lines transfected with pNF-$\kappa$B-SEAP-NPT plasmid were used to determine the activation of NF-$\kappa$B. Transfectant cells release the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the NF-$\kappa$B activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selective marker of geneticin resistance. NF-$\kappa$B activation was measured in the SEAP reporter gene assay using a fluorescence detection method. Kojic Acid showed the inhibition of cellular NF-$\kappa$B activity in both human keratinocyte transfectants. It could also downregulate the ultraviolet ray (UVR)-induced activation of NF-$\kappa$B expression in transfectant HaCaT cells. Moreover, the inhibitory activity of kojic Acid in transfectant HaCaT cells was found to be more potent than known antioxidants, e.g., vitamin C and N~acetyl-L-cysteine. These results indicate that kojic Acid is a potential inhibitor of NF-$\kappa$B activation in human keratinocytes, and suggest the hypothesis that NF-$\kappa$B activation may be involved in kojic Acid induced anti-melanogenic effect.

  • PDF

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

SPA0355 prevents ovariectomy-induced bone loss in mice

  • Kim, Sang Hoon;Zhang, Zhongkai;Moon, Young Jae;Park, Il Woon;Cho, Yong Gon;Jeon, Raok;Park, Byung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • Estrogen withdrawal in post-menopausal women leads to overactivation of osteoclasts, which contributes to the development of osteoporosis. Inflammatory cytokines are known as one of mechanisms of osteoclast activation after estrogen deficiency. SPA0355 is a thiourea derivative that has been investigated for its antioxidant and anti-inflammatory activities. However, its efficacy in bone resorption has not been previously investigated. The aim of this study was to investigate the impact of SPA0355 on the development of osteoporosis and to explore its mode of action. In vitro experiments showed that SPA0355 inhibited receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages. This effect appears to be independent of estrogen receptor activation as ICI 180,782 failed to abrogate its effects on osteoclasts. Further signaling studies revealed that SPA0355 suppressed activation of the MAPKs, Akt, and $NF-{\kappa}B$ pathways. SPA0355 also increased osteoblastic differentiation, as evidenced by its effects on alkaline phosphatase activity and mineralization nodule formation. Intraperitoneal administration of SPA0355 to ovariectomized mice prevented bone loss, as verified by three-dimensional images and bone morphometric parameters derived from ${\mu}CT$ analysis. Noticeably, SPA0355 did not show hepatotoxicity and nephrotoxicity and also had little effect on hematological parameters. Taken together, the results indicate that SPA0355 may protect against bone loss in ovariectomized mice by stimulation of osteoblast differentiation and by inhibition of osteoclast resorption. Therefore, SPA0355 is a safe and potential candidate for management of postmenopausal osteoporosis.

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong;Kim, Jaehyeon;Kim, Hyunjin;Han, Ji Eun;Kim, Sohee;Kang, Kyong-hwa;Kim, Donghoon;Kim, Jong-Min;Koh, Hyongjong
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.454-464
    • /
    • 2022
  • DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.

Evaluation of Immunomodulatory and Biological Effects of Aquilaria crassna Extracts (침향 추출물의 면역조절 및 생리활성 분석)

  • You-Lim, Hwang;Kwang-Youn, Kim;Sun Nyoung, Yu;Kwang-Il, Park;Soon-Cheol, Ahn
    • Herbal Formula Science
    • /
    • v.30 no.4
    • /
    • pp.249-257
    • /
    • 2022
  • Objectives : Aquilaria crassna is a traditional herbal medicine, which is used to treat allergies, diabetes, neurological diseases. Recently, Aquilaria crassna extracts have been reported in anti-bacterial and anti-inflammatory activities. In this study, various solvents fraction of Aquilaria crassna were investigated on various physiological activities. Methods : According to the polarity, the solvents fraction of Aquilaria crassna were confirmed through TLC, and the activities of the extracts were confirmed in anti-diabetes, anti-obesity, whitening, anti-gout, and anti-inflammation. Results : TLC results showed that ACM and ACM/E have similar patterns and most of the components were transferred to ACM/E. Treatment with ACM and ACM/E fraction were significantly decreased the generation of NO in lipopolysaccharide (LPS)-stimulated macrophage cells. Analysis of biological activities such as α-glucosidase, protein tyrosine phosphatase (PTP1B), tyrosinase, xanthine oxidase (XO) and pancreatic lipase inhibition, showed that ACM and ACM/E have more inhibitory effects than other fractions. Conclusions : Therefore, the results of the present study clearly demonstrate that Aquilaria crassna and its constituents might be beneficial in the prevention or treatment of immune-regulating effects.