• Title/Summary/Keyword: Phorbol 12-myristate 13-acetate (PMA)

Search Result 200, Processing Time 0.031 seconds

Prosuction of Cytokine and NO by RAW 264.7 Macrophages and PBMC In Vitro Incubation with Flavonoids

  • Lyu, Su-Yun;Park, Won-Bong
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.573-581
    • /
    • 2005
  • Flavonoids, a group of low molecular weight phenylbenzopyrones, have various pharmacological properties including antioxidant activity, anticancer, and immunomodulatory effects. In the present study, lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate/phytohemagglutinin (PMA/PHA) were used as stimulants for RAW 264.7 macrophages and human peripheral blood mononuclear cell (hPBMC), and tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-2 productions were measured. In addition, flavonoids were examined for their effects on LPS-induced NO production in RAW 264.7 macrophages. The results showed that all compounds were not strongly cytotoxic at the tested concentrations on hPBMC and RAW 264.7 macrophages. On immunomodulatory properties, catechin, epigallocatechin (EGC), naringenin, and fisetin repressed NO production and TNF-${\alpha}$ secretion. Furthermore, catechin, epigallocatechin gallate (EGCG), epicatechin (EC), luteolin, chrysin, quercetin, and galangin increased IL-2 secretion while EGC, apigenin, and fisetin inhibited the secretion. These results indicated that flavonoids have the capacity to modulate the immune response and have a potential anti-inflammatory activity. There was no obvious structure-activity relationship regard to the chemical composition of the flavonoids and their cell biological effects.

Two New Antiinflammatory Triterpene Saponins from the Egyptian edicinal Food Black Cumin (Seeds of Nigella sativa)

  • Elbandy, Mohamed;Kang, Ok-Hwa;Kwon, Dong-Yeul;Rho, Jung-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1811-1816
    • /
    • 2009
  • An extensive phytochemical investigation of the polar fractions of a methanolic extract of Egyptian medicinal food, black cumin (seeds of Nigella sativa L.) led to the isolation of two new triterpene saponins, named sativosides A and B (1-2), along with four known saponins (3-6). Sativoside A (1) is the first example of saponins containing 18-ene triterpene aglycon not only in this Nigella genus but also in the family Ranunculaceae. The structure of the new saponins was elucidated mainly by a combination of 1D and 2D NMR data, together with HRFABMS and acid hydrolysis. Three compounds (1-3) showed the significant inhibition effect of phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-induced production of IL-6 in a human mast cell (HMC-1) line.

Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway

  • Yu, Shin-Hye;Kim, Soomin;Kim, Yujin;Lee, Seo-Eun;Park, Jong Hyeok;Cho, Gayoung;Ha, Jong-Cheon;Jung, Hahnsun;Lim, Sang-Min;Han, Kyuboem;Lee, Hong Kyu;Kang, Young Cheol;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.136-141
    • /
    • 2022
  • Inflammation is one of the body's natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response. Therefore, treating inflammatory diseases by recovering mitochondrial function may be a potential therapeutic approach. Recently, mitochondrial transplantation has been proven to be beneficial in hyperinflammatory animal models. However, it is unclear how mitochondrial transplantation attenuates inflammatory responses induced by external stimuli. Here, we isolated mitochondria from umbilical cord-derived mesenchymal stem cells, referred as to PN-101. We found that PN-101 could significantly reduce LPS-induced mortality in mice. In addition, in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages, PN-101 attenuated LPS-induced increase production of pro-inflammatory cytokines. Furthermore, the anti-inflammatory effect of PN-101 was mediated by blockade of phosphorylation, nuclear translocation, and trans-activity of NFκB. Taken together, our results demonstrate that PN-101 has therapeutic potential to attenuate pathological inflammatory responses.

Effect of Thymeleatoxin on Mouse Oocyte Maturation (마우스 난 성숙과정에서의 Thymeleatoxin의 영향)

  • Lim E. A.;Shin J. H.;Choi T. S.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.187-190
    • /
    • 2004
  • Protein kinase C exists as a family of serine/threonine kinases which are broadly classified into three groups as cPKC nPKC and aPKC depending on their cofactor requirements. Previous studies have shown that the role of PKC in the process of mouse oocyte maturation. For example, phorbol 12-myristate 13-acetate which is known as an activator of cPKC and nPKC inhibits germinal vesicle break down and 1st polar body extrusion in maturing oocytes. In this study, the effect of thymeleatoxin, a specific activator of cPKC not nPKC, was tested comparing with PMA to address the roles of cPKC and nPKC during mouse oocyte maturation. Cumulus-oocyte complex were cultured in M16 medium for 6 or 12 hr with each of these PKC activators to investigate the effect of germinal vesicle breakdown (GVBD) or the extrusion of 1st polar body. IC/sup 50/ of GVBD were at concentrations of 50nM in PMA and 400nM in thymeleatoxin and of 1st polar body extrusion were 20nM in PMA and 200nM in thy- meleatoxin. The results suggest that activation of nPKC is more closely related to the inhibition of GVBD and 1st polar body extrusion than activation of cPKC. Additionally, we found that the oocytes inhibited 1st polar body extrusion with PMA or thymeleatoxin were arrested in metaphase I of first meiosis.

Regulatory Effects of Allergic Bronchial Asthma Responses by KagamJwaGwiEum (가감좌귀음(加減左歸飮)의 알레르기성 기관지천식(氣管支喘息) 반응(反應) 조절(調節) 효과(效果))

  • Park, Eun-Jung;Lee, Hai-Ja;Park, Jong-Ik;Park, Young-Joo
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.31-48
    • /
    • 2004
  • Objective : KagamJwagwiEum(KJE) has been used for the purpose of prevention and treatment of bronchial asthma and allergic asthma in Korea. To investigate the biological effect of KJE, the author examined cytotoxicity and inflammatory cytokines secretion with human leukemic mast cell line, HMC-1. Methods: HMC-1 was stimulated with phorbol 12-myristate 13-acetate(PMA) and calcium ionophore A23187. KJE by itself had no effect on viability of HMC-l. The effects of KJE on the secretion of tumor necrosis $factor-alpha(TNF-{\alpha})$, interleukin(IL)-6 and IL-8 from HMC-1 were evaluated with enzyme-linked immunosorbent assay. Results : KJE inhibited PMA plus A23187-induced $TNF-{\alpha}$ and IL-6 secretion. But KJE had no effect IL-8 secretion: KJE had immunoregulatory effects on cytokines, increased secretion of NO and $TNF-{\alpha}$ but did not effect IL-12 secretion when the cells were primed and trigged with $IFN-{\gamma}$ in the peritoneal macrophages of C57BL/6 mice. Conclusions : Taken together, these results suggest that KJE inhibit the production of inflammatory cytokines in HMC-1 cells and activate macrophages.

  • PDF

Production and Characterization of a Monoclonal Antibody against Surface Glycoprotein, gp6 1, on K562 Erythroleukemia Cells (K562 적혈구암 세포주의 표면 당단백질에 대한 단클론항체의 생성 및 특성)

  • 김한도;정재훈;홍선화;김정락;한규형;임운기;유미애;이경희;강호성
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.12-20
    • /
    • 1996
  • A multipotential hematopojetic cell line, 1(562 cell, was differentiated into megakaryocyte by a chemical inducer, PMA, with an enhanced expression of gpIlla accompaning with a distinct morphological change. On the other hand, 1(562 cells were differentiated into erythrocytes by other chemical inducers, DMSO or butyrate, with a concomitant increase in hemoglobin accumulation. An antigen of apparent molecular weight of 61 kDa was identified on the surface of 1(562 cells by using monoclonal antibody raised against 1(562 cells. The antigen was considered to be a glycoprotein molecule rich in sialic acids and the epitope of antigen was sensitive to neuraminidase digestion or peroxidase oxidation, but resistant to heat treatment. The 61 kDa surface antigen was increased or decreased in its expression along differentiation of 1(562 cells into megakaryocytes or erythrocytes, respedively.

  • PDF

Compound K ameliorates airway inflammation and mucus secretion through the regulation of PKC signaling in vitro and in vivo

  • Lee, Jae-Won;Kim, Mun-Ock;Song, Yu Na;Min, Jae-Hong;Kim, Seong-Man;Kang, Myung-Ji;Oh, Eun Sol;Lee, Ro Woon;Jung, Sunin;Ro, Hyunju;Lee, Jae Kyoung;Ryu, Hyung Won;Lee, Dae Young;Lee, Su Ui
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.496-504
    • /
    • 2022
  • Background: Cigarette smoke (CS) is considered a principal cause of chronic obstructive pulmonary disease (COPD) and is associated with mucus hypersecretion and airway inflammation. Ginsenoside compound K (CK), a product of ginsenoside metabolism, has various biological activities. Studies on the effects of CK for the treatment of COPD and mucus hypersecretion, including the underlying signaling mechanism, have not yet been conducted. Methods: To study the protective effects and molecular mechanism of CK, phorbol 12-myristate 13-acetate (PMA)-induced human airway epithelial (NCI-H292) cells were used as a cellular model of airway inflammation. An experimental mouse COPD model was also established via CS inhalation and intranasal administration of lipopolysaccharide. Mucin 5AC (MUC5AC), monocyte chemoattractant protein-1, tumor necrosis factor-α (TNF-α), and interleukin-6 secretion, as well as elastase activity and reactive oxygen species production, were determined through enzyme-linked immunosorbent assay. Inflammatory cell influx and mucus secretion in mouse lung tissues were estimated using hematoxylin and eosin and periodic acid-schiff staining, respectively. PKCδ and its downstream signaling molecules were analyzed via western blotting. Results: CK prevented the secretion of MUC5AC and TNF-α in PMA-stimulated NCI-H292 cells and exhibited a protective effect in COPD mice via the suppression of inflammatory mediators and mucus secretion. These effects were accompanied by an inactivation of PKCδ and related signaling in vitro and in vivo. Conclusion: CK suppressed pulmonary inflammation and mucus secretion in COPD mouse model through PKC regulation, highlighting the compound's potential as a useful adjuvant in the prevention and treatment of COPD.

Upregulation of MMP is Mediated by MEK1 Activation During Differentiation of Monocyte into Macrophage

  • Lim, Jae-Won;Cho, Yoon-Jung;Lee, Dong-Hyun;Jung, Byung-Chul;Kang, Han-Sol;Kim, Tack-Joong;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.104-111
    • /
    • 2012
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases which degrade extracellular matrix (ECM) during embryogenesis, wound healing, and tissue remodeling. Dysregulation of MMP activity is also associated with various pathological inflammatory conditions. In this study, we examined the expression pattern of MMPs during PMA-induced differentiation of THP-1 monocytic cells into macrophages. We found that MMP1, MMP8, MMP3, MMP10, MMP12, MMP19, MMP9, and MMP7 were upregulated during differentiation whereas MMP2 remained unchanged. Expression of MMPs increased in a time-dependent manner; MMP1, MMP8, MMP3, MMP10, and MMP12 increased beginning at 60 hr post PMA treatment whereas MMP19, MMP9, and MMP7 increased beginning at 24 hr post PMA treatment. To identify signal transduction pathways involved in PMA-induced upregulation of MMPs, we treated PMA-differentiated THP-1 cells with specific inhibitors for PKC, MEK1, NF-${\kappa}B$, PI3K, p38 MAPK and PLC. We found that inhibition of the MEK1 pathway blocked PMA-induced upregulation of all MMPs to varying degrees except for MMP-2. In addition, expression of select MMPs was inhibited by PI3K, p38 MAPK and PLC inhibitors. In conclusion, we show that of the MMPs examined, most MMPs were up-regulated during differentiation of monocyte into macrophage via the MEK1 pathway. These results provide basic information for studying MMPs expression during macrophage differentiation.

Suppression of Thrombospondin-1 Expression by PMA in the Porcine Aortic Endothelial Cells (정상 돼지 대동맥 내피세포에서 PMA에 의한 thrombospondin-1 발현 억제)

  • Chang, Seo-Yoon;Kang, Jung-Hoon;Hong, Kyong-Ja
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.154-162
    • /
    • 2004
  • Thrombospondin-1 (TSP-1), a negative regulator in tumor growth and angiogenesis, is cell-type specifically regulated and at transcriptional level by external stimuli. Previously, we found that phorbol 12-myristate 13-acetate (PMA) suppressed TSP-1 expression in porcine aortic endothelial (PAE) cell, but enhanced in hepatoma cell line, Hep 3B cell. A region between -767 and -723 on the tsp-1 promoter was defined as a responsive site to the suppression in PAE cell. eased on the previous results, the molecular mechanism of TSP-1 expression was determined by characterizing interactions between cis-elements and trans-factors using three overlapped oligonucleotide probes, oligo a-1 (from -767 to -738), a-2 (-759 to -730) and a-3 (-752 to -723). The results from electromobility shift assay showed that PMA-induced suppression of TSP-1 transcription in PAE cell might be caused via a negative regulator binding to the region from -752 to -730 and additionally generated by lacking two positive regulators binding to the sites from -767 to -760 and from -752 to -730. Especially, PMA enhanced the binding ability of the negative regulator to the site from -752 to -730 in PAE cell, but anti-c-Jun did not affected its binding ability.

Study on the Anti-inflammatory Effect of Yeonguemjiri-tang Water Extract (연금지리탕(連芩止痢湯) 물 추출물의 항염증작용에 관한 연구)

  • Kim, Jung-Hwan;Lee, Jang-Suk;Kang, Ok-Hwa;Kwon, Dong-Yeul;Lee, Ki-Nam;Chong, Myong-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1032-1038
    • /
    • 2011
  • Yeonguemjiri-tang(連芩止痢湯, YGT) exhibits potent anti-inflammatory activity in widely intestine disease, but its mechanism undisclosed. To elucidate the molecular mechanisms of YGT on pharmacological and biochemical actions in inflammation, we examined the effect of YGT on pro-inflammatory mediators in phorbol 12-myristate 13-acetate (PMA) plus A23187-induced mast cell and lipopolysaccharide (LPS)-stimulated macrophages. The investigation focused on whether YGT inhibited pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in PMA plus A23187-induced HMC-1 cells and inflammatory madiators such as nitric oxide (NO), TNF-${\alpha}$, IL-6, iNOS, COX-2 in LPS-stimulated RAW 264.7 cells. We found that YGT inhibited LPS-induced NO, TNF-${\alpha}$ and IL-6 productions as well as the expressions of iNOS and COX-2. These results suggest that YGT has inhibitory effects on mast cell-mediated and macrophage-mediated inflammation.