• Title/Summary/Keyword: Pheomelanin

Search Result 9, Processing Time 0.022 seconds

Regulation of Melanogenesis as Studied by Chemical Analysis of Melanins

  • Ito, Shosuke
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.2
    • /
    • pp.41-50
    • /
    • 2000
  • - Biochemical studies show that in the process of mixed melanogenesis, cysteinyldopas are produced first which are next oxidized to give pheomelanin. After all of the cysteine is consumed, eumelanin is then deposited on the preformed pheomelanin. - In vitro and in vivo studies show that tyrosinase activity is the most important factor that regulates the switch of melanogenesis, with higher activities increasing melanogenesis, especially eumelanogenesis. - In culturted melanocytes, the tyrosine to cysteine ratio is critical in determining the eumelanin to pheomelanin ratio. - Our HPLC method to analyze eumelanin and pheomelanin has become a useful tool in the study of melanogenesis regulation. There are many problems to be solved before we fully understand the regulation of melanogenesis. Mutations in mouse models are ideal models for studying the genetic and molecular control of melanogenesis. Even in the mouse models, it is not known how cysteine is excluded from being incorporated into melanins in black and other eumelaninc mice, Conversely, it is not known how cysteine is continuously incorporated into pheomelanin in lethal yellow and recessive yellow mice.

  • PDF

Study of Hair Melanins in Various Hair Color Alpaca (Lama Pacos)

  • Fan, Ruiwen;Yang, Gang;Dong, Changsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.444-449
    • /
    • 2010
  • The aim of this study was to measure the hair melanins of various colors and to find the relationship between the quantity of melanins and hair color phenotypes in alpacas. According to the Munsell color system, 3 healthy alpacas were selected for each of the 22 different hair color phenotypes (66 alpacas altogether). Alpaca hair was taken from the lateral thoracic region and then dissolved with different solutions to obtain melanins. The values of alkali-soluble melanins (ASM), eumelanin (EM) and pheomelanin (PM) were measured by spectrophotometric assay, and labeled as Sp.ASM, Sp.EM and Sp.PM, respectively. Data were analyzed using SPSS11.5 software. Results showed that average Sp.ASM and Sp.PM were increased as the color deepened from white to black, ranging from 0.500 to 4.543 for Sp.ASM and from 0.268 to 1.457 for Sp.EM. However, average Sp.PM had no such apparent relationship with color. Based on the value of Sp.ASM and EM, 7 hues were produced and gray was a single hue. Most of the data were in a normal distribution (p>0.10). ANOVA analysis showed that mean values of Sp.ASM, Sp.EM and Sp.PM were significantly different (p<0.05). The results also showed that Sp.ASM was positively correlated with Sp.EM but the correlation between Sp.ASM and Sp.PM was not significantly different from 0. It is concluded that EM is the major constituent of alpaca hair melanin; there is a significant correlation among ASM, EM and alpaca hair colors, and EM is the most reliable parameter for distinguishing these groups.

Applying the basic knowledge about regulation of pigmentation towards development of strategies for cutaneous hypopigmentation

  • Abdel-Malek, Zalfa A.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.3
    • /
    • pp.7-39
    • /
    • 2002
  • The extensive variation in human cutaneous pigmentation is mainly due to differences in the rate of melanin synthesis by epidermal melanocytes, the relative amounts of eumelanin and pheomelanin synthesized, and the manner and rate of transfer of melanosomes from melanocytes to keratinocytes. Pigmentation is a complex trait that is regulated genetically and environmentally. One gene that has been receiving a lot of attention is the gene for the melanocortin 1 receptor The extensive polymorphism of this gene in human populations suggests its significance in the diversity of pigmentation. Exposure to solar ultraviolet radiation (UV) results in increased synthesis of a variety of growth factors, cytokines and hormones, and in modulation of their receptors in the epidermis. Knowledge about the regulation of pigmentation has led to strategies for clinical treatment of hyperpigmented skin lesions. Three main strategies are: 1) the use of chemicals that interfere with the melanin synthetic pathway, 2) the design of peptides or peptide-mimetics based on the structure of hormones that regulate eumelanin synthesis, and 3) the use of agents that reduce melanosome transfer from melanocytes to keratinocytes. All three strategies are expected to induce hypopigmentation, by inhibiting total melanin synthesis, eumelanin production, or the epidermal melanin unit, respectively.

Investigation of MC1R SNPs and Their Relationships with Plumage Colors in Korean Native Chicken

  • Hoque, M.R.;Jin, S.;Heo, K.N.;Kang, B.S.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.625-629
    • /
    • 2013
  • The melanocortin 1 receptor (MC1R) gene is related to the plumage color variations in chicken. Initially, the MC1R gene from 30 individuals was sequenced and nine polymorphisms were obtained. Of these, three and six single nucleotide polymorphisms (SNPs) were confirmed as synonymous and nonsynonymous mutations, respectively. Among these, three selected SNPs were genotyped using the restriction fragment length polymorphism (RFLP) method in 150 individuals from five chicken breeds, which identified the plumage color responding alleles. The neighbor-joining phylogenetic tree using MC1R gene sequences indicated three well-differentiated different plumage pigmentations (eumelanin, pheomelanin and albino). Also, the genotype analyses indicated that the TT, AA and GG genotypes corresponded to the eumelanin, pheomelanin and albino plumage pigmentations at nucleotide positions 69, 376 and 427, respectively. In contrast, high allele frequencies with T, A and G alleles corresponded to black, red/yellow and white plumage color in 69, 376 and 427 nucleotide positions, respectively. Also, amino acids changes at position Asn23Asn, Val126Ile and Thr143Ala were observed in melanin synthesis with identified possible alleles, respectively. In addition, high haplotype frequencies in TGA, CGG and CAA haplotypes were well discriminated based on the plumage pigmentation in chicken breeds. The results obtained in this study can be used for designing proper breeding and conservation strategies for the Korean native chicken breeds, as well as for the developing breed identification markers in chicken.

Sequence characterization and polymorphism of melanocortin 1 receptor gene in some goat breeds with different coat color of Mongolia

  • Ganbold, Onolragchaa;Manjula, Prabuddha;Lee, Seung-Hwan;Paek, Woon Kee;Seo, Dongwon;Munkhbayar, Munkhbaatar;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.939-948
    • /
    • 2019
  • Objective: Extension and Agouti loci play a key role for proportions of eumelanin and pheomelanin in determining coat color in several species, including goat. Mongolian goats exhibit diverse types of coat color phenotypes. In this study, investigation of the melanocortin 1 receptor (MC1R) coding region in different coat colors in Mongolian goats was performed to ascertain the presence of the extension allele. Methods: A total of 105 goat samples representing three goat breeds were collected for this study from middle Mongolia. A 938 base pair (bp) long coding region of the MC1R gene was sequenced for three different breeds with different coat colors (Gobi Gurwan Saikhan: complete black, Zalaa Jinstiin Tsagaan: complete white, Mongolian native goat: admixture of different of coat colors). The genotypes of these goats were obtained from analyzing and comparing the sequencing results. Results: A total of seven haplotypes defined by five substitution were identified. The five single nucleotide polymorphisms included two synonymous mutations (c.183C>T and c.489G>A) and three missense (non-synonymous) mutations (c.676A>G, c.748T>G, and c.770T>A). Comparison of genotypes frequencies of two common missense mutions using chi-sqaure ($x^2$) test revealed significant differences between coat color groups (p<0.001). A logistic regression analysis additionally suggested highly significant association between genotypes and variation of black versus white uniform combination. Alternatively, most investigated goats (60.4%) belonged to H2 (TGAGT) haplotype. Conclusion: According to the findings obtained in this study on the investigated coat colors, mutations in MC1R gene may have the crucial role for determining eumelanin and pheomelanin phenotypes. Due to the complication of coat color phenotype, more detailed investigation needed.

Comparative Analysis of Melanin Contents in Hairs among Cattle Breeds (소의 모발 멜라닌 색소 함량의 품종별 비교 분석)

  • Lee, S.S.;Kang, S.R.;Han, S.H.;Cho, I.C.;Shin, K.Y.;Cho, Y.I.;Kang, T.Y.;Ko, Moon-Suck;Yang, Y.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.147-154
    • /
    • 2007
  • To characterize the colorization patterns of bovine hairs, the melanin contents were quantitatively assayed and compared among cattle breeds. The total melanin levels measured by spectrophotometric assay (A500) from Jeju Black cattle were significantly lower than those from Holstein or Angus with black coat color but significantly higher than those from Hanwoo with yellow coat color or Angus and Holstein with red coat color (P<0.001). The total melanin levels from Hanwoo were significantly lower than those from Red Angus and Red Holstein but significantly higher than those from Hanwoo×Charolais crossbred (P<0.001). The relative ratios of eumelanin to pheomelanin (A650/A500) were 0.382, 0.359, 0.112 and 0.124 in Angus, Jeju Balck cattle, Red Holstein and Hanwoo, respectively. These results show that the spectrophotometric method provides a convenient way to qualitatively characterize hair melanin and may be useful for studying expression of major coat color genes in Hanwoo and Jeju Black cattle.

Instrumental Analysis of the Human Hair Damaged by Bleaching Treatments - Focused on ATR FT-IRM -

  • Ha, Byung-Jo
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.23-33
    • /
    • 2008
  • The physico-chemical characteristics by bleaching treatments were assessed by several instrumental analyses such as surface morphology, chemical structural change, color change as well as tensile strength. The change of morphological characteristic was observed through scanning electron microscope(SEM). The observation of the fine structure on hair surface by SEM showed the bleached hair had much damaged to hair cuticle, and some of cuticle surface were worn away. To investigate the chemical structural changes in hair keratin, the cross-sections of hair samples were directly analysed using Fourier transform infrared microspectroscopy(FT-IRM). The results showed the cysteic acid S=O band intensity was distinctively increased by performing the bleaching treatment. The cleavage of cystine was appeared to proceed primarily through the sulfur-sulfur (-S-S-) fission whereby cysteic acid was formed as a principal oxidation products. The distribution of amide I band in hair keratin was determined by attenuated total reflectance(ATR) FT-IR mapping image. The results showed that the outer side of hair cortex was more damaged than the inner side of the hair cortex. Also, during chemical bleaching of the hair with alkaline peroxide, the hair was turned to reddish yellow due to the oxidative degradation of eumelanin. This means the eumelanin is more unstable than pheomelanin in chemical oxidation. With bleaching, the tensile strength was also reduced as a results of the chemical oxidation.

Substantial Effect of Melanin Influencing Factors on In vitro Melanogenesis in Muzzle Melanocytes of Differently Colored Hanwoo

  • Amna, Touseef;Park, Kyoung-Mi;Cho, In-Kyung;Choi, Tae-Jeong;Lee, Seung-Soo;Seo, Kang-Seok;Hwang, In-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1029-1037
    • /
    • 2012
  • The present study was designed to investigate the effect of ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH), nitric oxide (NO) and L-cysteine on melanin production and expression of related genes MC1R, Tyr, Tyrp-1 and Tyrp-2 in muzzle melanocytes of differently colored three native Hanwoo cattle. Muzzle samples were taken from black, brindle and brown Hanwoo and purified melanocytes were cultured with ${\alpha}$-MSH, nitric oxide and L-cysteine at 100 nM, $50{\mu}M$ and 0.07 mg/ml of media respectively. The amounts of total melanin, eumelanin and mRNA expression at Tyr, Tyrp-1, Tyrp-2 and MC1R levels were quantified. ${\alpha}$-MSH and nitric oxide significantly increased (p<0.05) the amount of total melanin in black and brindle whereas eumelanin production in brown Hanwoo muzzle melanocytes. On the contrary, L-cysteine greatly (p<0.05) depressed the eumelanin production in black color but increased in brown. Simultaneously, up regulation of Tyr by nitric oxide and ${\alpha}$-MSH and down regulation of Tyr, Tyrp-2 and MC1R genes by L-cysteine were observed in muzzle melanocytes of all three phenotypes. The results of this study revealed nitric oxide and ${\alpha}$-MSH contribute hyper-pigmentation by enhancing eumelanogenesis whereas L-cysteine contributes to pheomelanin production in different colored Hanwoo muzzle melanocytes.

Melanogenesis regulatory constituents from Premna serratifolia wood collected in Myanmar

  • WOO, SO-YEUN
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.21-22
    • /
    • 2019
  • Melanin is a mixture of pigmented biopolymers synthesized by epidermal melanocytes that determine the skin, eye, and hair colors. Melanocytes produce two different kinds of melanin, eumelanin (dark brown/black insoluble pigments found in dark skin and dark hair and pheomelanin (lighter red/yellow). The biological role of melanin is to prevent skin damage by ultraviolet (UV) radiation. However, the overproduction or deficiency of melanin synthesis could lead to serious dermatological problems, which include melasma, melanoderma, lentigo, and vitiligo. Therefore, regulating melanin production is important to prevent the pigmentation disorders. Myanmar has a rich in natural resources. However, the chemical constituents of these natural resources in Myanmar have not been fully investigated. In the effort to search for compounds with anti-melanin deposition activity from Myanmar natural resources, five plants were collected in Myanmar. Extracts of these collected five plants were tested for anti-melanin deposition activity against a mouse melanoma cell line (B16-F10) induced with ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) and 3-isobutyl-1-methylxanthine (IBMX), and their anti-melanin deposition activities were compared with the positive control, arbutin. Among the tested extracts, the CHCl3 extracts of the Premna serratifolia (syn: P. integrifolia) wood showed anti-melanin deposition activities with IC50 values of $81.3{\mu}g/mL$. Hence, this study aims to identify secondary metabolites with anti-melanin deposition activity from P. serratifolia wood of Myanmar. P. serratifolia belongs to the Verbenaceae family and is widely distributed in near western sea coast from South Asia to South East Asia, which include India, Malaysia, Vietnam, Cambodia, and Sri Lanka. People in Tanintharyi region located in the southern part of Myanmar utilize the P. serratifolia, Sperethusa crenulata, Naringi crenulata, and Limonia acidissima as Thanaka, traditional cosmetics in Myanmar. Thanaka is applied in the form of paste onto skins to make it smooth and clear, as well as to prevent wrinkles, skin aging, excessive facial oil, pimples, blackheads, and whiteheads. However, the chemical constituents responsible for their cosmetic properties are yet to be identified. Moreover, the chemical constituents of P. serratifolia was almost uncharacterized. Investigation of the P. serratifolia chemical constituents is thus an attractive endeavor to discover new anti-melanin deposition active compounds. The investigation of the chemical constituents of the active CHCl3 extract of P. serratifolia led to isolation of four new lignoids, premnan A (1), premnan B (2), taungtangyiol C (3), and 7,9-dihydroxydolichanthin B (4), together with premnan C (5) (assumed to be an artifact), one natural newlignoid,(3R,4S)-4-(1,3-benzodioxol-5-ylcarbonyl)-3-[(R)-1-(1,3-benzo dioxol-5-yl)-1-hydroxy methyl]tetrahydro-2-furanone (6), and five known compounds (7-11)1,2). The structures of all isolated compounds were determined on the basis of their spectroscopic data and by comparison with the reported literatures. The absolute configurations of 1-3 and 5 were also determined by optical rotation and circular dichroism (CD) data analyses1). The anti-melanin deposition activities of all the isolated compounds were evaluated against B16-F10 cell line. 7,9-Dihydroxydolichanthin B (4) and ($2{\alpha},3{\alpha}$)-olean-12-en-28-oic acid (11) showed strong anti-melanin deposition activities with IC50 values of 18.4 and $11.2{\mu}M$, respectively, without cytotoxicity2). On the other hand, compounds 1-3, 5, and 7 showed melanogenesis enhancing activities1). To better understand their anti-melanin deposition mechanism, the effects of 4 and 11 on tyrosinase activities were investigated. The assay indicated that compounds 4 and 11 did not inhibit tyrosinase. Furthermore, we also examined the mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Compounds 4 and 11 down-regulated the expression of Tyr and Mitf mRNAs, respectively. Although the P. serratifolia wood has been used as traditional cosmetics in Myanmar for centuries, there are no scientific evidences to support its effectiveness as cosmetics. Investigation of the anti-melanin deposition activity of the chemical constituents of P. serratifolia thus provided insight into the effectiveness of the P. serratifolia wood as a cosmetic agent.

  • PDF